BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 33455370)

  • 1. Automated Addressable Microfluidic Device for Minimally Disruptive Manipulation of Cells and Fluids within Living Cultures.
    Tong A; Pham QL; Shah V; Naik A; Abatemarco P; Voronov R
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1809-1820. PubMed ID: 33455370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants
    Nguyen M; Tong A; Volosov M; Madhavarapu S; Freeman J; Voronov R
    Biomicrofluidics; 2023 Mar; 17(2):024103. PubMed ID: 37035100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing.
    Aranda Hernandez J; Heuer C; Bahnemann J; Szita N
    Adv Biochem Eng Biotechnol; 2022; 179():101-127. PubMed ID: 34410457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, fabrication and assembly of lab-on-a-chip and its uses.
    Pradeep A; Raveendran J; Babu TGS
    Prog Mol Biol Transl Sci; 2022; 187(1):121-162. PubMed ID: 35094773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Minireview of Microfluidic Scaffold Materials in Tissue Engineering.
    Tong A; Voronov R
    Front Mol Biosci; 2021; 8():783268. PubMed ID: 35087865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold.
    Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter.
    Yalikun Y; Tanaka N; Hosokawa Y; Iino T; Tanaka Y
    Biomed Microdevices; 2017 Sep; 19(4):85. PubMed ID: 28929304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation.
    Zoupanou S; Chiriacò MS; Tarantini I; Ferrara F
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Cancer Cells from Liquid Biopsies Using 3D-Printed Affinity Devices.
    Yang Y; Griffin K; Villareal S; Pappas D
    Methods Mol Biol; 2023; 2679():233-240. PubMed ID: 37300620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.