BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 33455370)

  • 21. Automation of cell culture assays using a 3D-printed servomotor-controlled microfluidic valve system.
    Winkler S; Menke J; Meyer KV; Kortmann C; Bahnemann J
    Lab Chip; 2022 Nov; 22(23):4656-4665. PubMed ID: 36342331
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Cahill JF; Khalid M; Retterer ST; Walton CL; Kertesz V
    J Am Soc Mass Spectrom; 2020 Apr; 31(4):832-839. PubMed ID: 32233378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesive-Based Fabrication Technique for Culture of Lung Airway Epithelial Cells with Applications in Cell Patterning and Microfluidics.
    Dabaghi M; Tiessen N; Cao Q; Chandiramohan A; Saraei N; Kim Y; Gupta T; Selvaganapathy PR; Hirota JA
    ACS Biomater Sci Eng; 2021 Nov; 7(11):5301-5314. PubMed ID: 34696583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A ferrobotic system for automated microfluidic logistics.
    Yu W; Lin H; Wang Y; He X; Chen N; Sun K; Lo D; Cheng B; Yeung C; Tan J; Di Carlo D; Emaminejad S
    Sci Robot; 2020 Feb; 5(39):. PubMed ID: 33022601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders.
    Mofazzal Jahromi MA; Abdoli A; Rahmanian M; Bardania H; Bayandori M; Moosavi Basri SM; Kalbasi A; Aref AR; Karimi M; Hamblin MR
    Mol Neurobiol; 2019 Dec; 56(12):8489-8512. PubMed ID: 31264092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline.
    Moetazedian A; Candeo A; Liu S; Hughes A; Nasrollahi V; Saadat M; Bassi A; Grover LM; Cox LR; Poologasundarampillai G
    Adv Healthc Mater; 2023 Oct; 12(26):e2300636. PubMed ID: 37186512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model.
    González-Lana S; Randelovic T; Ciriza J; López-Valdeolivas M; Monge R; Sánchez-Somolinos C; Ochoa I
    Lab Chip; 2023 May; 23(10):2434-2446. PubMed ID: 37013698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Culturing and investigation of stress-induced lipid accumulation in microalgae using a microfluidic device.
    Holcomb RE; Mason LJ; Reardon KF; Cropek DM; Henry CS
    Anal Bioanal Chem; 2011 Apr; 400(1):245-53. PubMed ID: 21311874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation.
    Dettinger P; Wang W; Ahmed N; Zhang Y; Loeffler D; Kull T; Etzrodt M; Lengerke C; Schroeder T
    Lab Chip; 2020 Nov; 20(22):4246-4254. PubMed ID: 33063816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanofiber self-consistent additive manufacturing process for 3D microfluidics.
    Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D
    Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using a Microfluidic Device for Culture and Drug Toxicity Testing of 3D Cells.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():235-241. PubMed ID: 31124121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips.
    Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A
    Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices.
    Reyes DR; van Heeren H; Guha S; Herbertson L; Tzannis AP; Ducrée J; Bissig H; Becker H
    Lab Chip; 2021 Jan; 21(1):9-21. PubMed ID: 33289737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overcoming technological barriers in microfluidics: Leakage testing.
    Silverio V; Guha S; Keiser A; Natu R; Reyes DR; van Heeren H; Verplanck N; Herbertson LH
    Front Bioeng Biotechnol; 2022; 10():958582. PubMed ID: 36159671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.