BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 33455370)

  • 41. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insert-based microfluidics for 3D cell culture with analysis.
    Chen C; Townsend AD; Hayter EA; Birk HM; Sell SA; Martin RS
    Anal Bioanal Chem; 2018 May; 410(12):3025-3035. PubMed ID: 29536154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.
    Compera N; Atwell S; Wirth J; Wolfrum B; Meier M
    Lab Chip; 2021 Aug; 21(15):2986-2996. PubMed ID: 34143169
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.
    Bunge F; Driesche SVD; Vellekoop MJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanically activated artificial cell by using microfluidics.
    Ho KK; Lee LM; Liu AP
    Sci Rep; 2016 Sep; 6():32912. PubMed ID: 27610921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow.
    Santos Rosalem G; Gonzáles Torres LA; de Las Casas EB; Mathias FAS; Ruiz JC; Carvalho MGR
    PLoS One; 2020; 15(12):e0243840. PubMed ID: 33306749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nano-liter perfusion microfluidic device made entirely by two-photon polymerization for dynamic cell culture with easy cell recovery.
    McLennan HJ; Blanch AJ; Wallace SJ; Ritter LJ; Heinrich SL; Gardner DK; Dunning KR; Gauvin MJ; Love AK; Thompson JG
    Sci Rep; 2023 Jan; 13(1):562. PubMed ID: 36631601
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types.
    Huang JH; Harris JF; Nath P; Iyer R
    Biomed Microdevices; 2016 Oct; 18(5):88. PubMed ID: 27613401
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.
    Berenguel-Alonso M; Sabés-Alsina M; Morató R; Ymbern O; Rodríguez-Vázquez L; Talló-Parra O; Alonso-Chamarro J; Puyol M; López-Béjar M
    SLAS Technol; 2017 Oct; 22(5):507-517. PubMed ID: 28944724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acoustically-driven thread-based tuneable gradient generators.
    Ramesan S; Rezk AR; Cheng KW; Chan PP; Yeo LY
    Lab Chip; 2016 Aug; 16(15):2820-8. PubMed ID: 27334420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
    Liu W; Liu D; Hu R; Huang Z; Sun M; Han K
    Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic technology for cell biology-related applications: a review.
    Mukherjee J; Chaturvedi D; Mishra S; Jain R; Dandekar P
    J Biol Phys; 2024 Mar; 50(1):1-27. PubMed ID: 38055086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel microfluidic 3D platform for culturing pancreatic ductal adenocarcinoma cells: comparison with in vitro cultures and in vivo xenografts.
    Beer M; Kuppalu N; Stefanini M; Becker H; Schulz I; Manoli S; Schuette J; Schmees C; Casazza A; Stelzle M; Arcangeli A
    Sci Rep; 2017 Apr; 7(1):1325. PubMed ID: 28465513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.