These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33455370)

  • 81. High-throughput injection molded microfluidic device for single-cell analysis of spatiotemporal dynamics.
    Kim Y; Song J; Lee Y; Cho S; Kim S; Lee SR; Park S; Shin Y; Jeon NL
    Lab Chip; 2021 Aug; 21(16):3150-3158. PubMed ID: 34180916
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 83. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 84. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Three-dimensional Printing of Thermoplastic Materials to Create Automated Syringe Pumps with Feedback Control for Microfluidic Applications.
    Chen MC; Lake JR; Heyde KC; Ruder WC
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222163
    [TBL] [Abstract][Full Text] [Related]  

  • 86. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A smartphone controlled handheld microfluidic liquid handling system.
    Li B; Li L; Guan A; Dong Q; Ruan K; Hu R; Li Z
    Lab Chip; 2014 Oct; 14(20):4085-92. PubMed ID: 25182078
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices.
    Wong I; Ho CM
    Microfluid Nanofluidics; 2009 Sep; 7(3):291-306. PubMed ID: 20357909
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Digital microfluidics using soft lithography.
    Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T
    Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 91. 3D-Printed micro-optofluidic device for chemical fluids and cells detection.
    Cairone F; Davi S; Stella G; Guarino F; Recca G; Cicala G; Bucolo M
    Biomed Microdevices; 2020 May; 22(2):37. PubMed ID: 32419044
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells.
    Wertheim L; Shapira A; Amir RJ; Dvir T
    Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A Single-Layer PDMS Chamber for On-Chip Bacteria Culture.
    Morales Navarrete P; Yuan J
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290319
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics.
    Lee UN; Day JH; Haack AJ; Bretherton RC; Lu W; DeForest CA; Theberge AB; Berthier E
    Lab Chip; 2020 Feb; 20(3):525-536. PubMed ID: 31915779
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Open Microfluidic Capillary Systems.
    Berthier E; Dostie AM; Lee UN; Berthier J; Theberge AB
    Anal Chem; 2019 Jul; 91(14):8739-8750. PubMed ID: 31260266
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink.
    Zhou K; Dey M; Ayan B; Zhang Z; Ozbolat V; Kim MH; Khristov V; Ozbolat IT
    Biomed Mater; 2021 Feb; ():. PubMed ID: 33571984
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.