These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 33455372)
21. 3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications. Zhang C; Zheng H; Sun J; Zhou Y; Xu W; Dai Y; Mo J; Wang Z Adv Mater; 2022 Jan; 34(2):e2105996. PubMed ID: 34734449 [TBL] [Abstract][Full Text] [Related]
22. Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties. Cristovão AF; Sousa D; Silvestre F; Ropio I; Gaspar A; Henriques C; Velhinho A; Baptista AC; Faustino M; Ferreira I 3D Print Med; 2019 Aug; 5(1):12. PubMed ID: 31376049 [TBL] [Abstract][Full Text] [Related]
23. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Chen S; Tan WS; Bin Juhari MA; Shi Q; Cheng XS; Chan WL; Song J Biomed Eng Lett; 2020 Nov; 10(4):453-479. PubMed ID: 33194241 [TBL] [Abstract][Full Text] [Related]
25. Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Davoodi E; Montazerian H; Khademhosseini A; Toyserkani E Acta Biomater; 2020 Nov; 117():261-272. PubMed ID: 33031967 [TBL] [Abstract][Full Text] [Related]
26. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer. Karamzadeh V; Shen ML; Ravanbakhsh H; Sohrabi-Kashani A; Okhovatian S; Savoji H; Radisic M; Juncker D Adv Healthc Mater; 2024 Apr; 13(9):e2303708. PubMed ID: 37990819 [TBL] [Abstract][Full Text] [Related]
27. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Zhou Y; Yue Z; Chen Z; Wallace G Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357 [TBL] [Abstract][Full Text] [Related]
28. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
29. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Liu Y; Wong CW; Chang SW; Hsu SH Acta Biomater; 2021 Mar; 122():211-219. PubMed ID: 33444794 [TBL] [Abstract][Full Text] [Related]
30. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting. Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283 [TBL] [Abstract][Full Text] [Related]
31. Chitosan hydrogels in 3D printing for biomedical applications. Rajabi M; McConnell M; Cabral J; Ali MA Carbohydr Polym; 2021 May; 260():117768. PubMed ID: 33712126 [TBL] [Abstract][Full Text] [Related]
32. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
33. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. Hasselmann S; Hahn L; Lorson T; Schätzlein E; Sébastien I; Beudert M; Lühmann T; Neubauer JC; Sextl G; Luxenhofer R; Heinrich D Mater Horiz; 2021 Nov; 8(12):3334-3344. PubMed ID: 34617095 [TBL] [Abstract][Full Text] [Related]
34. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures. Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307 [TBL] [Abstract][Full Text] [Related]
35. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
36. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726 [TBL] [Abstract][Full Text] [Related]
38. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734 [TBL] [Abstract][Full Text] [Related]
39. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Chen YW; Shen YF; Ho CC; Yu J; Wu YA; Wang K; Shih CT; Shie MY Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():679-687. PubMed ID: 30033302 [TBL] [Abstract][Full Text] [Related]
40. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review. Distler T; Boccaccini AR Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]