These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33455387)

  • 1. Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model.
    Bolaños RV; Castilho M; de Grauw J; Cokelaere S; Plomp S; Groll J; van Weeren PR; Gbureck U; Malda J
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1681-1689. PubMed ID: 33455387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model.
    Golafshan N; Vorndran E; Zaharievski S; Brommer H; Kadumudi FB; Dolatshahi-Pirouz A; Gbureck U; van Weeren R; Castilho M; Malda J
    Biomaterials; 2020 Dec; 261():120302. PubMed ID: 32932172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model.
    Diloksumpan P; Bolaños RV; Cokelaere S; Pouran B; de Grauw J; van Rijen M; van Weeren R; Levato R; Malda J
    Adv Healthc Mater; 2020 May; 9(10):e1901807. PubMed ID: 32324336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical degradation of calcium magnesium phosphate (stanfieldite) based bone replacement materials and the effect on their cytocompatibility.
    Schaufler C; Schmitt AM; Moseke C; Stahlhut P; Geroneit I; Brückner M; Meyer-Lindenberg A; Vorndran E
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microporosities in 3D-Printed Tricalcium-Phosphate-Based Bone Substitutes Enhance Osteoconduction and Affect Osteoclastic Resorption.
    Ghayor C; Chen TH; Bhattacharya I; Özcan M; Weber FE
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33291724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation.
    Carrel JP; Wiskott A; Moussa M; Rieder P; Scherrer S; Durual S
    Clin Oral Implants Res; 2016 Jan; 27(1):55-62. PubMed ID: 25350936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bone regeneration capacity of 3D-printed templates in calvarial defect models: A systematic review and meta-analysis.
    Hassan MN; Yassin MA; Suliman S; Lie SA; Gjengedal H; Mustafa K
    Acta Biomater; 2019 Jun; 91():1-23. PubMed ID: 30980937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration.
    Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants.
    Habibovic P; Gbureck U; Doillon CJ; Bassett DC; van Blitterswijk CA; Barralet JE
    Biomaterials; 2008 Mar; 29(7):944-53. PubMed ID: 18055009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors.
    Teotia AK; Dienel K; Qayoom I; van Bochove B; Gupta S; Partanen J; Seppälä J; Kumar A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48340-48356. PubMed ID: 32993288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration.
    Bartnikowski M; Vaquette C; Ivanovski S
    Clin Oral Implants Res; 2020 May; 31(5):431-441. PubMed ID: 31957069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.