These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33455764)

  • 1. Dynamic kinetic analysis of growth of Listeria monocytogenes in pasteurized cow milk.
    Jia Z; Huang L; Wei Z; Yao Y; Fang T; Li C
    J Dairy Sci; 2021 Mar; 104(3):2654-2667. PubMed ID: 33455764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic modeling of Listeria monocytogenes growth in pasteurized milk.
    Xanthiakos K; Simos D; Angelidis AS; Nychas GJ; Koutsoumanis K
    J Appl Microbiol; 2006 Jun; 100(6):1289-98. PubMed ID: 16696676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive Model of
    Thomas M; Tiwari R; Mishra A
    J Food Prot; 2019 Dec; 82(12):2071-2079. PubMed ID: 31714806
    [No Abstract]   [Full Text] [Related]  

  • 4. Modeling the growth of Listeria monocytogenes in pasteurized white asparagus.
    Valero A; Carrasco E; Pérez-Rodríguez F; García-Gimeno RM; Zurera G
    J Food Prot; 2007 Mar; 70(3):753-7. PubMed ID: 17388071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive Growth Model of
    Noviyanti F; Shimizu S; Hosotani Y; Koseki S; Inatsu Y; Kawasaki S
    Foodborne Pathog Dis; 2020 Nov; 17(11):693-700. PubMed ID: 32357075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth modeling of Listeria monocytogenes in pasteurized liquid egg.
    Ohkochi M; Koseki S; Kunou M; Sugiura K; Tsubone H
    J Food Prot; 2013 Sep; 76(9):1549-56. PubMed ID: 23992499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a dynamic growth model for Listeria monocytogenes in fluid whole milk.
    Alavi SH; Puri VM; Knabel SJ; Mohtar RH; Whiting RC
    J Food Prot; 1999 Feb; 62(2):170-6. PubMed ID: 10030637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic modeling of Listeria monocytogenes growth in pasteurized vanilla cream after postprocessing contamination.
    Panagou EZ; Nychas GJ
    J Food Prot; 2008 Sep; 71(9):1828-34. PubMed ID: 18810866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Analysis for
    Liu Y; Wang X; Liu B; Dong Q
    J Food Prot; 2019 Nov; 82(11):1820-1827. PubMed ID: 31596616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing Listeria monocytogenes growth kinetics in rice pudding at different storage temperatures.
    Hussein A; Possas A; Hassanien AA; Shaker EM; Valero A
    Int J Food Microbiol; 2023 Nov; 404():110346. PubMed ID: 37543026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical models to predict kinetic behavior and growth probabilities of Listeria monocytogenes on pork skin at constant and dynamic temperatures.
    Lee S; Lee H; Lee JY; Skandamis P; Park BY; Oh MH; Yoon Y
    J Food Prot; 2013 Nov; 76(11):1868-72. PubMed ID: 24215689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic model for Listeria monocytogenes growth during distribution, retail storage, and domestic storage of pasteurized milk.
    Koutsoumanis K; Pavlis A; Nychas GJ; Xanthiakos K
    Appl Environ Microbiol; 2010 Apr; 76(7):2181-91. PubMed ID: 20139308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal inactivation kinetics of Listeria monocytogenes in milk under isothermal and dynamic conditions.
    Wang X; Zheng J; Luo L; Hong Y; Li X; Zhu Y; Wu Y; Bai L
    Food Res Int; 2024 Mar; 179():114010. PubMed ID: 38342535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of Listeria monocytogenes in the presence or not of intentionally-added lactic acid bacteria during ripening of artisanal Minas semi-hard cheese.
    Gonzales-Barron U; Campagnollo FB; Schaffner DW; Sant'Ana AS; Cadavez VAP
    Food Microbiol; 2020 Oct; 91():103545. PubMed ID: 32539971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A radial basis function neural network approach to determine the survival of Listeria monocytogenes in Katiki, a traditional Greek soft cheese.
    Panagou EZ
    J Food Prot; 2008 Apr; 71(4):750-9. PubMed ID: 18468029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the Growth of Listeria monocytogenes and Salmonella Typhimurium in Diced Celery, Onions, and Tomatoes during Simulated Commercial Transport, Retail Storage, and Display.
    Jayeola V; Jeong S; Almenar E; Marks BP; Vorst KL; Brown JW; Ryser ET
    J Food Prot; 2019 Feb; 82(2):287-300. PubMed ID: 30682265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Predictive Models for the Growth Kinetics of Listeria monocytogenes on Fresh Pork under Different Storage Temperatures.
    Luo K; Hong SS; Wang J; Chung MJ; Deog-Hwan O
    J Food Prot; 2015 May; 78(5):921-6. PubMed ID: 25951385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of micro-architectural structure of cabbage substratum and or background bacterial flora on the growth of Listeria monocytogenes.
    Ongeng D; Ryckeboer J; Vermeulen A; Devlieghere F
    Int J Food Microbiol; 2007 Nov; 119(3):291-9. PubMed ID: 17910986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.