These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33455808)

  • 21. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice.
    Hou X; Jing J; Jiang Y; Huang X; Xian Q; Lei T; Zhu J; Wong KF; Zhao X; Su M; Li D; Liu L; Qiu Z; Sun L
    Nat Commun; 2024 Mar; 15(1):2253. PubMed ID: 38480733
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased anatomical specificity of neuromodulation via modulated focused ultrasound.
    Mehić E; Xu JM; Caler CJ; Coulson NK; Moritz CT; Mourad PD
    PLoS One; 2014; 9(2):e86939. PubMed ID: 24504255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trans-Spinal Focused Ultrasound Stimulation Selectively Modulates Descending Motor Pathway.
    Kim E; Kum J; Kim H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():314-320. PubMed ID: 35108206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional organization within the medullary reticular formation of the intact unanesthetized cat. III. Microstimulation during locomotion.
    Drew T
    J Neurophysiol; 1991 Sep; 66(3):919-38. PubMed ID: 1753295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Cerebral Neurovascular Mapping During Focused Ultrasound Peripheral Neuromodulation of Neuropathic Pain.
    Lee SA; Kamimura HAS; Smith M; Konofagou EE
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1770-1779. PubMed ID: 38198257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex.
    Soma S; Yoshida J; Kato S; Takahashi Y; Nonomura S; Sugimura YK; Ríos A; Kawabata M; Kobayashi K; Kato F; Sakai Y; Isomura Y
    J Neurosci; 2019 Jan; 39(3):485-502. PubMed ID: 30478035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of anesthetic dose on the motor response induced by low-intensity pulsed ultrasound stimulation.
    Yuan Y; Wang X; Yan J; Li X
    BMC Neurosci; 2018 Dec; 19(1):78. PubMed ID: 30509160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C; Falempin M; Canu MH
    Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging-Guided Dual-Target Neuromodulation of the Mouse Brain Using Array Ultrasound.
    Li G; Qiu W; Hong J; Jiang Q; Su M; Mu P; Yang G; Li Y; Wang C; Zhang H; Zheng H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Sep; 65(9):1583-1589. PubMed ID: 29994254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.
    Fisher JAN; Gumenchuk I
    J Neural Eng; 2018 Jun; 15(3):035004. PubMed ID: 29436519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals.
    Kim H; Kim S; Sim NS; Pasquinelli C; Thielscher A; Lee JH; Lee HJ
    Brain Stimul; 2019; 12(2):251-255. PubMed ID: 30503712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling.
    Foster KL; Higham TE
    Proc Biol Sci; 2014 May; 281(1782):20133331. PubMed ID: 24621949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional ultrasound (fUS) imaging of displacement-guided focused ultrasound (FUS) neuromodulation in mice.
    Kim S; Kwon N; Hossain MM; Bendig J; Konofagou EE
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential modulation of descending signals from the reticulospinal system during reaching and locomotion.
    Dyson KS; Miron JP; Drew T
    J Neurophysiol; 2014 Nov; 112(10):2505-28. PubMed ID: 25143539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats.
    Gad P; Woodbridge J; Lavrov I; Zhong H; Roy RR; Sarrafzadeh M; Edgerton VR
    J Neuroeng Rehabil; 2012 Jun; 9():38. PubMed ID: 22691460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capacitive Micromachined Ultrasonic Transducer (CMUT) ring array for transcranial ultrasound neuromodulation.
    Kim H; Kim S; Lee HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2675-2678. PubMed ID: 30440957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity of extrinsic limb muscles in dogs at walk, trot and gallop.
    Deban SM; Schilling N; Carrier DR
    J Exp Biol; 2012 Jan; 215(Pt 2):287-300. PubMed ID: 22189773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion.
    Zelenin PV; Deliagina TG; Orlovsky GN; Karayannidou A; Dasgupta NM; Sirota MG; Beloozerova IN
    J Neurosci; 2011 Mar; 31(12):4636-49. PubMed ID: 21430163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion.
    Reilly SM; Willey JS; Biknevicius AR; Blob RW
    J Exp Biol; 2005 Mar; 208(Pt 6):993-1009. PubMed ID: 15767301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.