These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 33455878)

  • 1. CRISPR/Cas9 gene editing for curing sickle cell disease.
    Park SH; Bao G
    Transfus Apher Sci; 2021 Feb; 60(1):103060. PubMed ID: 33455878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges.
    Demirci S; Leonard A; Haro-Mora JJ; Uchida N; Tisdale JF
    Adv Exp Med Biol; 2019; 1144():37-52. PubMed ID: 30715679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-based gene-editing technology for sickle cell disease.
    Ma L; Yang S; Peng Q; Zhang J; Zhang J
    Gene; 2023 Jul; 874():147480. PubMed ID: 37182559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and IND-enabling studies of a novel Cas9 genome-edited autologous CD34
    Katta V; O'Keefe K; Li Y; Mayuranathan T; Lazzarotto CR; Wood RK; Levine RM; Powers A; Mayberry K; Manquen G; Yao Y; Zhang J; Jang Y; Nimmagadda N; Dempsey EA; Lee G; Uchida N; Cheng Y; Fazio F; Lockey T; Meagher M; Sharma A; Tisdale JF; Zhou S; Yen JS; Weiss MJ; Tsai SQ
    Mol Ther; 2024 Oct; 32(10):3433-3452. PubMed ID: 39086133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease.
    Park SH; Lee CM; Dever DP; Davis TH; Camarena J; Srifa W; Zhang Y; Paikari A; Chang AK; Porteus MH; Sheehan VA; Bao G
    Nucleic Acids Res; 2019 Sep; 47(15):7955-7972. PubMed ID: 31147717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease.
    Lattanzi A; Camarena J; Lahiri P; Segal H; Srifa W; Vakulskas CA; Frock RL; Kenrick J; Lee C; Talbott N; Skowronski J; Cromer MK; Charlesworth CT; Bak RO; Mantri S; Bao G; DiGiusto D; Tisdale J; Wright JF; Bhatia N; Roncarolo MG; Dever DP; Porteus MH
    Sci Transl Med; 2021 Jun; 13(598):. PubMed ID: 34135108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease.
    Dimitrievska M; Bansal D; Vitale M; Strouboulis J; Miccio A; Nicolaides KH; El Hoss S; Shangaris P; Jacków-Malinowska J
    Blood Rev; 2024 May; 65():101185. PubMed ID: 38493007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.
    DeWitt MA; Magis W; Bray NL; Wang T; Berman JR; Urbinati F; Heo SJ; Mitros T; Muñoz DP; Boffelli D; Kohn DB; Walters MC; Carroll D; Martin DI; Corn JE
    Sci Transl Med; 2016 Oct; 8(360):360ra134. PubMed ID: 27733558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice.
    Wilkinson AC; Dever DP; Baik R; Camarena J; Hsu I; Charlesworth CT; Morita C; Nakauchi H; Porteus MH
    Nat Commun; 2021 Jan; 12(1):686. PubMed ID: 33514718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S
    N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells.
    Dever DP; Bak RO; Reinisch A; Camarena J; Washington G; Nicolas CE; Pavel-Dinu M; Saxena N; Wilkens AB; Mantri S; Uchida N; Hendel A; Narla A; Majeti R; Weinberg KI; Porteus MH
    Nature; 2016 Nov; 539(7629):384-389. PubMed ID: 27820943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sickle cell disease: combination new therapies vs. CRISPR-Cas9 potential and challenges - review article.
    Youssry I; Ayad N
    Ann Hematol; 2024 Aug; 103(8):2613-2619. PubMed ID: 37867187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates.
    Romero Z; Lomova A; Said S; Miggelbrink A; Kuo CY; Campo-Fernandez B; Hoban MD; Masiuk KE; Clark DN; Long J; Sanchez JM; Velez M; Miyahira E; Zhang R; Brown D; Wang X; Kurmangaliyev YZ; Hollis RP; Kohn DB
    Mol Ther; 2019 Aug; 27(8):1389-1406. PubMed ID: 31178391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene editing for sickle cell disease and transfusion dependent thalassemias- A cure within reach.
    Eckrich MJ; Frangoul H
    Semin Hematol; 2023 Jan; 60(1):3-9. PubMed ID: 37080708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease.
    Germino-Watnick P; Hinds M; Le A; Chu R; Liu X; Uchida N
    Cells; 2022 Jun; 11(11):. PubMed ID: 35681538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease.
    Ramadier S; Chalumeau A; Felix T; Othman N; Aknoun S; Casini A; Maule G; Masson C; De Cian A; Frati G; Brusson M; Concordet JP; Cavazzana M; Cereseto A; El Nemer W; Amendola M; Wattellier B; Meneghini V; Miccio A
    Mol Ther; 2022 Jan; 30(1):145-163. PubMed ID: 34418541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base editing of haematopoietic stem cells rescues sickle cell disease in mice.
    Newby GA; Yen JS; Woodard KJ; Mayuranathan T; Lazzarotto CR; Li Y; Sheppard-Tillman H; Porter SN; Yao Y; Mayberry K; Everette KA; Jang Y; Podracky CJ; Thaman E; Lechauve C; Sharma A; Henderson JM; Richter MF; Zhao KT; Miller SM; Wang T; Koblan LW; McCaffrey AP; Tisdale JF; Kalfa TA; Pruett-Miller SM; Tsai SQ; Weiss MJ; Liu DR
    Nature; 2021 Jul; 595(7866):295-302. PubMed ID: 34079130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of gene editing strategies for human β-globin (HBB) gene mutations.
    Kalkan BM; Kala EY; Yuce M; Karadag Alpaslan M; Kocabas F
    Gene; 2020 Apr; 734():144398. PubMed ID: 31987908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo HSC prime editing rescues sickle cell disease in a mouse model.
    Li C; Georgakopoulou A; Newby GA; Chen PJ; Everette KA; Paschoudi K; Vlachaki E; Gil S; Anderson AK; Koob T; Huang L; Wang H; Kiem HP; Liu DR; Yannaki E; Lieber A
    Blood; 2023 Apr; 141(17):2085-2099. PubMed ID: 36800642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.