These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 33455878)
21. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Paschoudi K; Yannaki E; Psatha N Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481 [TBL] [Abstract][Full Text] [Related]
22. CRISPR-Cas9 Editing of the Sharma A; Boelens JJ; Cancio M; Hankins JS; Bhad P; Azizy M; Lewandowski A; Zhao X; Chitnis S; Peddinti R; Zheng Y; Kapoor N; Ciceri F; Maclachlan T; Yang Y; Liu Y; Yuan J; Naumann U; Yu VWC; Stevenson SC; De Vita S; LaBelle JL N Engl J Med; 2023 Aug; 389(9):820-832. PubMed ID: 37646679 [TBL] [Abstract][Full Text] [Related]
23. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
24. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements. Lattanzi A; Meneghini V; Pavani G; Amor F; Ramadier S; Felix T; Antoniani C; Masson C; Alibeu O; Lee C; Porteus MH; Bao G; Amendola M; Mavilio F; Miccio A Mol Ther; 2019 Jan; 27(1):137-150. PubMed ID: 30424953 [TBL] [Abstract][Full Text] [Related]
25. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Everette KA; Newby GA; Levine RM; Mayberry K; Jang Y; Mayuranathan T; Nimmagadda N; Dempsey E; Li Y; Bhoopalan SV; Liu X; Davis JR; Nelson AT; Chen PJ; Sousa AA; Cheng Y; Tisdale JF; Weiss MJ; Yen JS; Liu DR Nat Biomed Eng; 2023 May; 7(5):616-628. PubMed ID: 37069266 [TBL] [Abstract][Full Text] [Related]
26. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Antoniani C; Meneghini V; Lattanzi A; Felix T; Romano O; Magrin E; Weber L; Pavani G; El Hoss S; Kurita R; Nakamura Y; Cradick TJ; Lundberg AS; Porteus M; Amendola M; El Nemer W; Cavazzana M; Mavilio F; Miccio A Blood; 2018 Apr; 131(17):1960-1973. PubMed ID: 29519807 [TBL] [Abstract][Full Text] [Related]
27. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644 [TBL] [Abstract][Full Text] [Related]
28. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Weber L; Frati G; Felix T; Hardouin G; Casini A; Wollenschlaeger C; Meneghini V; Masson C; De Cian A; Chalumeau A; Mavilio F; Amendola M; Andre-Schmutz I; Cereseto A; El Nemer W; Concordet JP; Giovannangeli C; Cavazzana M; Miccio A Sci Adv; 2020 Feb; 6(7):. PubMed ID: 32917636 [TBL] [Abstract][Full Text] [Related]
30. Preclinical evaluation for engraftment of CD34 Uchida N; Li L; Nassehi T; Drysdale CM; Yapundich M; Gamer J; Haro-Mora JJ; Demirci S; Leonard A; Bonifacino AC; Krouse AE; Linde NS; Allen C; Peshwa MV; De Ravin SS; Donahue RE; Malech HL; Tisdale JF Cell Rep Med; 2021 Apr; 2(4):100247. PubMed ID: 33948577 [TBL] [Abstract][Full Text] [Related]
31. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144 [TBL] [Abstract][Full Text] [Related]
32. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells. Hoban MD; Lumaquin D; Kuo CY; Romero Z; Long J; Ho M; Young CS; Mojadidi M; Fitz-Gibbon S; Cooper AR; Lill GR; Urbinati F; Campo-Fernandez B; Bjurstrom CF; Pellegrini M; Hollis RP; Kohn DB Mol Ther; 2016 Sep; 24(9):1561-9. PubMed ID: 27406980 [TBL] [Abstract][Full Text] [Related]
33. Hematopoietic stem cell transplantation and cellular therapy in sickle cell disease: where are we now? Tanhehco YC; Bhatia M Curr Opin Hematol; 2019 Nov; 26(6):448-452. PubMed ID: 31483336 [TBL] [Abstract][Full Text] [Related]
34. Effective therapies for sickle cell disease: are we there yet? Crossley M; Christakopoulos GE; Weiss MJ Trends Genet; 2022 Dec; 38(12):1284-1298. PubMed ID: 35934593 [TBL] [Abstract][Full Text] [Related]
35. A justice-based argument for including sickle cell disease in CRISPR/Cas9 clinical research. Baffoe-Bonnie MS Bioethics; 2019 Jul; 33(6):661-668. PubMed ID: 31107563 [TBL] [Abstract][Full Text] [Related]
36. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Parums DV Med Sci Monit; 2024 Mar; 30():e944204. PubMed ID: 38425279 [TBL] [Abstract][Full Text] [Related]
37. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524 [TBL] [Abstract][Full Text] [Related]
39. CRISPR/Cas9 system and its applications in human hematopoietic cells. Hu X Blood Cells Mol Dis; 2016 Nov; 62():6-12. PubMed ID: 27736664 [TBL] [Abstract][Full Text] [Related]
40. Gene Therapy as the New Frontier for Sickle Cell Disease. Garg H; Tatiossian KJ; Peppel K; Kato GJ; Herzog E Curr Med Chem; 2022; 29(3):453-466. PubMed ID: 34047257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]