These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33455913)

  • 1. Artificial intelligence-based prediction of transfusion in the intensive care unit in patients with gastrointestinal bleeding.
    Levi R; Carli F; Arévalo AR; Altinel Y; Stein DJ; Naldini MM; Grassi F; Zanoni A; Finkelstein S; Vieira SM; Sousa J; Barbieri R; Celi LA
    BMJ Health Care Inform; 2021 Jan; 28(1):. PubMed ID: 33455913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit.
    Yuan KC; Tsai LW; Lee KH; Cheng YW; Hsu SC; Lo YS; Chen RJ
    Int J Med Inform; 2020 Sep; 141():104176. PubMed ID: 32485555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Glasgow-Blatchford and AIMS65 scoring systems for risk stratification in upper gastrointestinal bleeding in the emergency department.
    Yaka E; Yılmaz S; Doğan NÖ; Pekdemir M
    Acad Emerg Med; 2015 Jan; 22(1):22-30. PubMed ID: 25556538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
    Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG
    Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Review and Comparison of Publicly Available ICU Data Sets-A Decision Guide for Clinicians and Data Scientists.
    Sauer CM; Dam TA; Celi LA; Faltys M; de la Hoz MAA; Adhikari L; Ziesemer KA; Girbes A; Thoral PJ; Elbers P
    Crit Care Med; 2022 Jun; 50(6):e581-e588. PubMed ID: 35234175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit.
    Shung D; Huang J; Castro E; Tay JK; Simonov M; Laine L; Batra R; Krishnaswamy S
    Sci Rep; 2021 Apr; 11(1):8827. PubMed ID: 33893364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding.
    Shung DL; Au B; Taylor RA; Tay JK; Laursen SB; Stanley AJ; Dalton HR; Ngu J; Schultz M; Laine L
    Gastroenterology; 2020 Jan; 158(1):160-167. PubMed ID: 31562847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing unnecessary lab testing in the ICU with artificial intelligence.
    Cismondi F; Celi LA; Fialho AS; Vieira SM; Reti SR; Sousa JM; Finkelstein SN
    Int J Med Inform; 2013 May; 82(5):345-58. PubMed ID: 23273628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
    Awad A; Bader-El-Den M; McNicholas J; Briggs J
    Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A decision support system to facilitate management of patients with acute gastrointestinal bleeding.
    Chu A; Ahn H; Halwan B; Kalmin B; Artifon EL; Barkun A; Lagoudakis MG; Kumar A
    Artif Intell Med; 2008 Mar; 42(3):247-59. PubMed ID: 18063351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of the Glasgow-Blatchford score in predicting clinical outcomes and intervention in hospitalized patients with upper GI bleeding.
    Bryant RV; Kuo P; Williamson K; Yam C; Schoeman MN; Holloway RH; Nguyen NQ
    Gastrointest Endosc; 2013 Oct; 78(4):576-83. PubMed ID: 23790755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit.
    van de Sande D; van Genderen ME; Huiskens J; Gommers D; van Bommel J
    Intensive Care Med; 2021 Jul; 47(7):750-760. PubMed ID: 34089064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study.
    Poncette AS; Mosch L; Spies C; Schmieding M; Schiefenhövel F; Krampe H; Balzer F
    J Med Internet Res; 2020 Jun; 22(6):e19091. PubMed ID: 32459655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit.
    Deshmukh F; Merchant SS
    Am J Gastroenterol; 2020 Oct; 115(10):1657-1668. PubMed ID: 32341266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to predict in-hospital mortality risk in the intensive care unit with attention-based temporal convolution network.
    Chen YW; Li YJ; Deng P; Yang ZY; Zhong KH; Zhang LG; Chen Y; Zhi HY; Hu XY; Gu JT; Ning JL; Lu KZ; Zhang J; Xia ZY; Qin XL; Yi B
    BMC Anesthesiol; 2022 Apr; 22(1):119. PubMed ID: 35461225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of outcome in intensive care unit trauma patients: a multicenter study of Acute Physiology and Chronic Health Evaluation (APACHE), Trauma and Injury Severity Score (TRISS), and a 24-hour intensive care unit (ICU) point system.
    Vassar MJ; Lewis FR; Chambers JA; Mullins RJ; O'Brien PE; Weigelt JA; Hoang MT; Holcroft JW
    J Trauma; 1999 Aug; 47(2):324-9. PubMed ID: 10452468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of HIV testing on blood utilization in the intensive care unit in patients with gastrointestinal bleeding.
    Ravry ME; Paz HL
    Intensive Care Med; 1995 Nov; 21(11):933-6. PubMed ID: 8636526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The attributable mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients.
    Cook DJ; Griffith LE; Walter SD; Guyatt GH; Meade MO; Heyland DK; Kirby A; Tryba M;
    Crit Care; 2001 Dec; 5(6):368-75. PubMed ID: 11737927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.