BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33455999)

  • 1. The Enzymatic Preparation of Human Milk Fat Substitute Intermediate Rich in Palmitic Acid at sn-2 Position and Low-Unsaturated Fatty Acids at sn-1(3) Positions from Palm Oil Substrate.
    Shimane K; Ogawa S; Yamamoto Y; Hara S
    J Oleo Sci; 2021 Feb; 70(2):165-173. PubMed ID: 33455999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Preparation and Oxidative Stability of Human Milk Fat Substitute Containing Polyunsaturated Fatty Acid Located at sn-2 Position.
    Ogasawara S; Ogawa S; Yamamoto Y; Hara S
    J Oleo Sci; 2020 Aug; 69(8):825-835. PubMed ID: 32641606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic preparation of human milk fat substitutes and their oxidation stability.
    Kotani K; Yamamoto Y; Hara S
    J Oleo Sci; 2015; 64(3):275-81. PubMed ID: 25757431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.
    Zou XG; Hu JN; Zhao ML; Zhu XM; Li HY; Liu XR; Liu R; Deng ZY
    J Agric Food Chem; 2014 Oct; 62(43):10594-603. PubMed ID: 25298236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs.
    Maduko CO; Akoh CC; Park YW
    J Dairy Sci; 2007 Feb; 90(2):594-601. PubMed ID: 17235135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods.
    Zou XQ; Huang JH; Jin QZ; Liu YF; Tao GJ; Cheong LZ; Wang XG
    J Agric Food Chem; 2012 Sep; 60(37):9415-23. PubMed ID: 22920386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase - catalyzed Modification of Rice Bran Oil Solid Fat Fraction.
    Kosiyanant P; Pande G; Tungjaroenchai W; Akoh CC
    J Oleo Sci; 2018 Oct; 67(10):1299-1306. PubMed ID: 30210074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stearidonic acid soybean oil enriched with palmitic acid at the sn-2 position by enzymatic interesterification for use as human milk fat analogues.
    Teichert SA; Akoh CC
    J Agric Food Chem; 2011 May; 59(10):5692-701. PubMed ID: 21517012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Structured Triacylglycerols Containing Palmitic Acids at sn-2 Position and Docosahexaenoic Acids at sn-1, 3 Positions.
    Liu Y; Guo Y; Sun Z; Jie X; Li Z; Wang J; Wang Y; Xue C
    J Oleo Sci; 2015; 64(11):1227-34. PubMed ID: 26521813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes.
    Sahin N; Akoh CC; Karaali A
    J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana.
    He Y; Qiu C; Guo Z; Huang J; Wang M; Chen B
    Bioresour Technol; 2017 Aug; 238():129-138. PubMed ID: 28433900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of immobilized lipase Thermomyces lanuginosa in catalyzing interesterification of palm olein in batch reaction.
    Saw MH; Siew WL
    J Oleo Sci; 2014; 63(3):295-302. PubMed ID: 24492381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic Synthesis of Human Milk Fat Substitute - A Review on Technological Approaches.
    Hasibuan HA; Sitanggang AB; Andarwulan N; Hariyadi P
    Food Technol Biotechnol; 2021 Dec; 59(4):475-495. PubMed ID: 35136372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase from Thermomyces lanuginosus.
    Lee JH; Son JM; Akoh CC; Kim MR; Lee KT
    N Biotechnol; 2010 Feb; 27(1):38-45. PubMed ID: 19879984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Human Milk Fat Substitute: Based on the Similarity Evaluation Model and Computer Software.
    Zhu H; Zhao P; Wang X; Wang Y; Zhang S; Pang X; Lv J
    Molecules; 2024 May; 29(9):. PubMed ID: 38731587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Triacylglycerol Molecular Species on the Oxidation Behavior of Oils Containing α-Linolenic Acid.
    Dote S; Yamamoto Y; Hara S
    J Oleo Sci; 2016; 65(3):193-9. PubMed ID: 26935948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase-catalyzed preparation of human milk fat substitutes from palm stearin in a solvent-free system.
    Zou XQ; Huang JH; Jin QZ; Liu YF; Song ZH; Wang XG
    J Agric Food Chem; 2011 Jun; 59(11):6055-63. PubMed ID: 21568327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel and controllable method for simultaneous preparation of human milk fat substitutes (OPL, OPO and LPL): two-step enzymatic ethanolysis-esterification strategy.
    Li Y; Zhang Y; Zhou Y; Zhang Y; Zheng M
    Food Res Int; 2023 Jan; 163():112168. PubMed ID: 36596114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.
    Maduko CO; Akoh CC; Park YW
    J Dairy Sci; 2007 May; 90(5):2147-54. PubMed ID: 17430912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida rugosa lipase LIP1-catalyzed transesterification to produce human milk fat substitute.
    Srivastava A; Akoh CC; Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Jul; 54(14):5175-81. PubMed ID: 16819932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.