These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33456433)
1. Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks. Rauf HT; Lali MIU; Khan MA; Kadry S; Alolaiyan H; Razaq A; Irfan R Pers Ubiquitous Comput; 2023; 27(3):733-750. PubMed ID: 33456433 [TBL] [Abstract][Full Text] [Related]
2. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of machine learning methods for COVID-19 transmission forecasting. Dairi A; Harrou F; Zeroual A; Hittawe MM; Sun Y J Biomed Inform; 2021 Jun; 118():103791. PubMed ID: 33915272 [TBL] [Abstract][Full Text] [Related]
4. Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells. ArunKumar KE; Kalaga DV; Kumar CMS; Kawaji M; Brenza TM Chaos Solitons Fractals; 2021 May; 146():110861. PubMed ID: 33746373 [TBL] [Abstract][Full Text] [Related]
5. Forecasting COVID-19 cases: A comparative analysis between recurrent and convolutional neural networks. Nabi KN; Tahmid MT; Rafi A; Kader ME; Haider MA Results Phys; 2021 May; 24():104137. PubMed ID: 33898209 [TBL] [Abstract][Full Text] [Related]
6. Forecasting COVID-19 cases: A comparative analysis between Recurrent and Convolutional Neural Networks. Nabi KN; Tahmid MT; Rafi A; Kader ME; Haider MA medRxiv; 2021 Feb; ():. PubMed ID: 34013282 [TBL] [Abstract][Full Text] [Related]
7. Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India. Sah S; Surendiran B; Dhanalakshmi R; Mohanty SN; Alenezi F; Polat K Comput Math Methods Med; 2022; 2022():1556025. PubMed ID: 35529266 [TBL] [Abstract][Full Text] [Related]
8. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
9. Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Shastri S; Singh K; Kumar S; Kour P; Mansotra V Chaos Solitons Fractals; 2020 Nov; 140():110227. PubMed ID: 32843824 [TBL] [Abstract][Full Text] [Related]
10. COVID-19 Patient Count Prediction Using LSTM. Iqbal M; Al-Obeidat F; Maqbool F; Razzaq S; Anwar S; Tubaishat A; Khan MS; Shah B IEEE Trans Comput Soc Syst; 2021 Aug; 8(4):974-981. PubMed ID: 37982037 [TBL] [Abstract][Full Text] [Related]
11. Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting. Tariq MU; Ismail SB; Babar M; Ahmad A PLoS One; 2023; 18(7):e0287755. PubMed ID: 37471397 [TBL] [Abstract][Full Text] [Related]
12. COVID-19 in Bangladesh: A Deeper Outlook into The Forecast with Prediction of Upcoming Per Day Cases Using Time Series. Mohammad Masum AK; Khushbu SA; Keya M; Abujar S; Hossain SA Procedia Comput Sci; 2020; 178():291-300. PubMed ID: 33520018 [TBL] [Abstract][Full Text] [Related]
13. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Zeroual A; Harrou F; Dairi A; Sun Y Chaos Solitons Fractals; 2020 Nov; 140():110121. PubMed ID: 32834633 [TBL] [Abstract][Full Text] [Related]
14. CNN-LSTM deep learning based forecasting model for COVID-19 infection cases in Nigeria, South Africa and Botswana. Muhammad LJ; Haruna AA; Sharif US; Mohammed MB Health Technol (Berl); 2022; 12(6):1259-1276. PubMed ID: 36406187 [TBL] [Abstract][Full Text] [Related]
15. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chimmula VKR; Zhang L Chaos Solitons Fractals; 2020 Jun; 135():109864. PubMed ID: 32390691 [TBL] [Abstract][Full Text] [Related]
16. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning. Jin W; Dong S; Yu C; Luo Q Comput Biol Med; 2022 Jul; 146():105560. PubMed ID: 35551008 [TBL] [Abstract][Full Text] [Related]
17. Outbreak prediction of COVID-19 using Recurrent neural network with Gated Recurrent Units. Natarajan S; Kumar M; Gadde SKK; Venugopal V Mater Today Proc; 2023; 80():3433-3437. PubMed ID: 34307058 [TBL] [Abstract][Full Text] [Related]
18. Data driven time-varying SEIR-LSTM/GRU algorithms to track the spread of COVID-19. Feng L; Chen Z; Jr HAL; Furati K; Khaliq A Math Biosci Eng; 2022 Jun; 19(9):8935-8962. PubMed ID: 35942743 [TBL] [Abstract][Full Text] [Related]
19. Deep learning in public health: Comparative predictive models for COVID-19 case forecasting. Tariq MU; Ismail SB PLoS One; 2024; 19(3):e0294289. PubMed ID: 38483948 [TBL] [Abstract][Full Text] [Related]
20. The efficacy of deep learning based LSTM model in forecasting the outbreak of contagious diseases. Absar N; Uddin N; Khandaker MU; Ullah H Infect Dis Model; 2022 Mar; 7(1):170-183. PubMed ID: 34977438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]