These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 3345730)

  • 1. Effects of 17 beta-estradiol on high energy phosphate concentrations and the flux catalyzed by creatine kinase in immature rat uteri: 31P nuclear magnetic resonance studies.
    Degani H; Victor TA; Kaye AM
    Endocrinology; 1988 Apr; 122(4):1631-8. PubMed ID: 3345730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estradiol induction of accelerated energy metabolism in prepuberal rat uteri in vitro: mRNA hybridization and [13C]NMR studies.
    Kaye AM; Shinkarenko L; Waisman A; Victor T; Degani H
    J Steroid Biochem; 1989; 34(1-6):289-92. PubMed ID: 2626019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen-induced changes in high-energy phosphate metabolism in rat uterus: 31P NMR studies.
    Degani H; Shaer A; Victor TA; Kaye AM
    Biochemistry; 1984 Jun; 23(12):2572-7. PubMed ID: 6466600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH and inorganic phosphate on creatine kinase inactivation: an in vitro 31P NMR saturation-transfer study.
    Williams GD; Enders B; Smith MB
    Biochem Int; 1992 Feb; 26(1):35-42. PubMed ID: 1616495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium.
    Bittl JA; Ingwall JS
    Circulation; 1987 Jan; 75(1 Pt 2):I96-101. PubMed ID: 2947755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estrogen-induced creatine kinase in the reproductive system of the immature female rat.
    Malnick SD; Shaer A; Soreq H; Kaye AM
    Endocrinology; 1983 Nov; 113(5):1907-9. PubMed ID: 6628331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition in response to estrogen withdrawal and tamoxifen therapy of human breast cancer xenografts evaluated by in vivo 31P magnetic resonance spectroscopy, creatine kinase activity, and apoptotic index.
    Kristensen CA; Kristjansen PE; Brünner N; Quistorff B; Spang-Thomsen M
    Cancer Res; 1995 Sep; 55(18):4146-50. PubMed ID: 7664292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C NMR kinetic studies of the rapid stimulation of glucose metabolism by estrogen in immature rat uterus.
    Shinkarenko L; Kaye AM; Degani H
    NMR Biomed; 1994 Aug; 7(5):209-17. PubMed ID: 7848810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes modulates differentially creatine kinase-specific activity responsiveness to estradiol-17beta and to raloxifene in rat organs.
    Somjen D; Shen M; Stern N; Mirsky N
    J Cell Biochem; 2006 Sep; 99(1):133-9. PubMed ID: 16598752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magentization transfer study of creatine kinase in myocardium. Potential clinical interest of in vivo enzymology.
    Joubert F; Hoerter JA
    Cell Mol Biol (Noisy-le-grand); 1997 Jul; 43(5):763-72. PubMed ID: 9298598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of pregnancy and parturition on phosphorus metabolites in rat uterus studied by 31P nuclear magnetic resonance.
    Dawson MJ; Wray S
    J Physiol; 1985 Nov; 368():19-31. PubMed ID: 4078741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM; Bland JL; Gadian DG; Radda GK
    Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glucose-6-phosphate dehydrogenase activity in uterine tissue in organ culture.
    Keran EE; Barker KL
    Endocrinology; 1976 Nov; 99(5):1386-97. PubMed ID: 1086769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phosphorus-31 nuclear magnetic resonance study of effects of altered thyroid state on cardiac bioenergetics.
    Keogh JM; Matthews PM; Seymour AM; Radda GK
    Adv Myocardiol; 1985; 6():299-309. PubMed ID: 2986261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-idiotypic antibody as an oestrogen mimetic in vivo: stimulation of creatine kinase specific activity in rat animal models.
    Sömjen D; Amir-Zaltsman Y; Mor G; Gayer B; Lichter S; Barnard G; Kohen F
    J Endocrinol; 1996 May; 149(2):305-12. PubMed ID: 8708542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Induction, by 17 beta-estradiol, of thymidine kinase activity in uteri of rats].
    Haras D; Mahoudo H; Bourtourault M; Samperez S; Jouan P
    C R Seances Soc Biol Fil; 1983; 177(3):283-9. PubMed ID: 6225484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estrogen regulation of creatine kinase-B in the rat uterus.
    Pentecost BT; Mattheiss L; Dickerman HW; Kumar SA
    Mol Endocrinol; 1990 Jul; 4(7):1000-10. PubMed ID: 2284002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of creatine kinase in heart: a 31P NMR saturation- and inversion-transfer study.
    Degani H; Laughlin M; Campbell S; Shulman RG
    Biochemistry; 1985 Sep; 24(20):5510-6. PubMed ID: 4074712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.