These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 33457420)
1. Redirecting Metabolic Flux towards the Mevalonate Pathway for Enhanced Naz T; Nazir Y; Nosheen S; Ullah S; Halim H; Fazili ABA; Li S; Mustafa K; Mohamed H; Yang W; Song Y Biomed Res Int; 2020; 2020():8890269. PubMed ID: 33457420 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli. Yoon SH; Lee SH; Das A; Ryu HK; Jang HJ; Kim JY; Oh DK; Keasling JD; Kim SW J Biotechnol; 2009 Mar; 140(3-4):218-26. PubMed ID: 19428716 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Yang J; Guo L Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509 [TBL] [Abstract][Full Text] [Related]
4. Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. Klempová T; Slaný O; Šišmiš M; Marcinčák S; Čertík M J Biotechnol; 2020 Mar; 311():1-11. PubMed ID: 32057783 [TBL] [Abstract][Full Text] [Related]
5. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Jang HJ; Yoon SH; Ryu HK; Kim JH; Wang CL; Kim JY; Oh DK; Kim SW Microb Cell Fact; 2011 Jul; 10():59. PubMed ID: 21801353 [TBL] [Abstract][Full Text] [Related]
6. Comparative Analysis of β-Carotene Production by Naz T; Nosheen S; Li S; Nazir Y; Mustafa K; Liu Q; Garre V; Song Y Metabolites; 2020 Jan; 10(1):. PubMed ID: 31963282 [TBL] [Abstract][Full Text] [Related]
7. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering. Zhang Y; Navarro E; Cánovas-Márquez JT; Almagro L; Chen H; Chen YQ; Zhang H; Torres-Martínez S; Chen W; Garre V Microb Cell Fact; 2016 Jun; 15():99. PubMed ID: 27266994 [TBL] [Abstract][Full Text] [Related]
8. Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Choudhari SM; Ananthanarayan L; Singhal RS Bioresour Technol; 2008 May; 99(8):3166-73. PubMed ID: 17637505 [TBL] [Abstract][Full Text] [Related]
9. Production of β-carotene from deproteinized waste whey filtrate using Mucor azygosporus MTCC 414 in submerged fermentation. Azmi W; Thakur M; Kumar A Acta Microbiol Immunol Hung; 2011 Sep; 58(3):189-200. PubMed ID: 21983320 [TBL] [Abstract][Full Text] [Related]
10. Gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides. Iturriaga EA; Papp T; Alvarez MI; Eslava AP Methods Mol Biol; 2012; 898():109-22. PubMed ID: 22711120 [TBL] [Abstract][Full Text] [Related]
11. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology. Wang SL; Sun JS; Han BZ; Wu XZ J Food Sci; 2007 Oct; 72(8):M325-9. PubMed ID: 17995613 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica. Zhang XK; Wang DN; Chen J; Liu ZJ; Wei LJ; Hua Q Biotechnol Lett; 2020 Jun; 42(6):945-956. PubMed ID: 32090297 [TBL] [Abstract][Full Text] [Related]
13. Expression Vectors and Gene Fusions for the Directed Modification of the Carotenoid Biosynthesis Pathway in Mucor circinelloides. Iturriaga EA; Alvarez MI; Eslava AP; Papp T Methods Mol Biol; 2018; 1852():239-256. PubMed ID: 30109635 [TBL] [Abstract][Full Text] [Related]
14. Optimization of beta-carotene production from synthetic medium by Blakeslea trispora: a mathematical modeling. Mantzouridou F; Roukasa T; Kotzekidoua P; Liakopoulou M Appl Biochem Biotechnol; 2002 May; 101(2):153-75. PubMed ID: 12049204 [TBL] [Abstract][Full Text] [Related]
15. Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Yoon SH; Park HM; Kim JE; Lee SH; Choi MS; Kim JY; Oh DK; Keasling JD; Kim SW Biotechnol Prog; 2007; 23(3):599-605. PubMed ID: 17500531 [TBL] [Abstract][Full Text] [Related]
16. Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty Acids in Hussain SA; Garcia A; Khan MAK; Nosheen S; Zhang Y; Koffas MAG; Garre V; Lee SC; Song Y Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32764225 [TBL] [Abstract][Full Text] [Related]
17. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production. Yamada R; Ando K; Sakaguchi R; Matsumoto T; Ogino H World J Microbiol Biotechnol; 2024 Jun; 40(7):230. PubMed ID: 38829459 [TBL] [Abstract][Full Text] [Related]
18. Enhanced production of β-carotene by recombinant industrial wine yeast using grape juice as substrate. Yan GL; Liang HY; Duan CQ; Han BZ Curr Microbiol; 2012 Feb; 64(2):152-8. PubMed ID: 22080204 [TBL] [Abstract][Full Text] [Related]
19. [Improving β-carotene production in Escherichia coli by metabolic engineering of glycerol utilization pathway]. Dong Y; Hu K; Li X; Li Q; Zhang X Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):247-260. PubMed ID: 28956381 [TBL] [Abstract][Full Text] [Related]
20. Enhanced β-carotene production in Yarrowia lipolytica through the metabolic and fermentation engineering. Jing Y; Wang J; Gao H; Jiang Y; Jiang W; Jiang M; Xin F; Zhang W J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 37055369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]