BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33458509)

  • 1. Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using
    Rasheed A; Azizi L; Turkki P; Janka M; Hytönen VP; Tuukkanen S
    ACS Omega; 2021 Jan; 6(1):569-578. PubMed ID: 33458509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 3. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.
    Tabriz AG; Hermida MA; Leslie NR; Shu W
    Biofabrication; 2015 Dec; 7(4):045012. PubMed ID: 26689257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose-Based Inks-Effect of Alginate Content on the Water Absorption of 3D Printed Constructs.
    Espinosa E; Filgueira D; Rodríguez A; Chinga-Carrasco G
    Bioengineering (Basel); 2019 Jul; 6(3):. PubMed ID: 31366050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells.
    Lameirinhas NS; Teixeira MC; Carvalho JPF; Valente BFA; Pinto RJB; Oliveira H; Luís JL; Pires L; Oliveira JM; Vilela C; Freire CSR
    Int J Biol Macromol; 2023 Feb; 229():849-860. PubMed ID: 36572084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiffness-Controlled Hydrogels for 3D Cell Culture Models.
    Merivaara A; Koivunotko E; Manninen K; Kaseva T; Monola J; Salli E; Koivuniemi R; Savolainen S; Valkonen S; Yliperttula M
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation.
    Ronzoni FL; Aliberti F; Scocozza F; Benedetti L; Auricchio F; Sampaolesi M; Cusella G; Redwan IN; Ceccarelli G; Conti M
    J Tissue Eng Regen Med; 2022 May; 16(5):484-495. PubMed ID: 35246958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation.
    Gantumur E; Nakahata M; Kojima M; Sakai S
    Int J Bioprint; 2020; 6(1):250. PubMed ID: 32596552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ ionic crosslinking of 3D bioprinted cell-hydrogel constructs for mechanical reinforcement and improved cell growth.
    Lee JE; Heo SW; Kim CH; Park SJ; Park SH; Kim TH
    Biomater Adv; 2023 Apr; 147():213322. PubMed ID: 36758283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose Reinforced Hyaluronan-Based Bioinks.
    Träger A; Naeimipour S; Jury M; Selegård R; Aili D
    Biomacromolecules; 2023 Jul; 24(7):3086-3093. PubMed ID: 37341704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.
    Ho L; Hsu SH
    Acta Biomater; 2018 Apr; 70():57-70. PubMed ID: 29425719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes.
    Raddatz L; Lavrentieva A; Pepelanova I; Bahnemann J; Geier D; Becker T; Scheper T; Beutel S
    J Funct Biomater; 2018 Nov; 9(4):. PubMed ID: 30423908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.