These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33458525)
1. Investigation of Boron Distribution at the SiO Hsu SH; Wan CC; Cho TC; Lee YJ ACS Omega; 2021 Jan; 6(1):733-738. PubMed ID: 33458525 [TBL] [Abstract][Full Text] [Related]
2. Monolayer Contact Doping from a Silicon Oxide Source Substrate. Ye L; González-Campo A; Kudernac T; Núñez R; de Jong M; van der Wiel WG; Huskens J Langmuir; 2017 Apr; 33(15):3635-3638. PubMed ID: 28351137 [TBL] [Abstract][Full Text] [Related]
3. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers. Hazut O; Agarwala A; Amit I; Subramani T; Zaidiner S; Rosenwaks Y; Yerushalmi R ACS Nano; 2012 Nov; 6(11):10311-8. PubMed ID: 23083376 [TBL] [Abstract][Full Text] [Related]
4. Direct Dopant Patterning by a Remote Monolayer Doping Enabled by a Monolayer Fragmentation Study. Hazut O; Yerushalmi R Langmuir; 2017 Jun; 33(22):5371-5377. PubMed ID: 28502172 [TBL] [Abstract][Full Text] [Related]
5. Boosting the Boron Dopant Level in Monolayer Doping by Carboranes. Ye L; González-Campo A; Núñez R; de Jong MP; Kudernac T; van der Wiel WG; Huskens J ACS Appl Mater Interfaces; 2015 Dec; 7(49):27357-61. PubMed ID: 26595856 [TBL] [Abstract][Full Text] [Related]
6. Nanoscale Junction Formation by Gas-Phase Monolayer Doping. Taheri P; Fahad HM; Tosun M; Hettick M; Kiriya D; Chen K; Javey A ACS Appl Mater Interfaces; 2017 Jun; 9(24):20648-20655. PubMed ID: 28548483 [TBL] [Abstract][Full Text] [Related]
7. Functionalization of SiO van Druenen M; Collins G; Glynn C; O'Dwyer C; Holmes JD ACS Appl Mater Interfaces; 2018 Jan; 10(2):2191-2201. PubMed ID: 29240397 [TBL] [Abstract][Full Text] [Related]
8. Behavior of phosphorous and contaminants from molecular doping combined with a conventional spike annealing method. Shimizu Y; Takamizawa H; Inoue K; Yano F; Nagai Y; Lamagna L; Mazzeo G; Perego M; Prati E Nanoscale; 2014 Jan; 6(2):706-10. PubMed ID: 24284778 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of P δ-layer in SiO2 by monolayer doping. Arduca E; Mastromatteo M; De Salvador D; Seguini G; Lenardi C; Napolitani E; Perego M Nanotechnology; 2016 Feb; 27(7):075606. PubMed ID: 26789694 [TBL] [Abstract][Full Text] [Related]
10. Highly doped silicon nanowires by monolayer doping. Veerbeek J; Ye L; Vijselaar W; Kudernac T; van der Wiel WG; Huskens J Nanoscale; 2017 Feb; 9(8):2836-2844. PubMed ID: 28169380 [TBL] [Abstract][Full Text] [Related]
12. Local Enhancement of Dopant Diffusion from Polycrystalline Silicon Passivating Contacts. Fırat M; Wouters L; Lagrain P; Haase F; Polzin JI; Chaudhary A; Nogay G; Desrues T; Krügener J; Peibst R; Tous L; Sivaramakrishnan Radhakrishnan H; Poortmans J ACS Appl Mater Interfaces; 2022 Apr; 14(15):17975-17986. PubMed ID: 35380425 [TBL] [Abstract][Full Text] [Related]
13. Nanopatterning of Group V Elements for Tailoring the Electronic Properties of Semiconductors by Monolayer Doping. Thissen P; Cho K; Longo RC ACS Appl Mater Interfaces; 2017 Jan; 9(2):1922-1928. PubMed ID: 27998054 [TBL] [Abstract][Full Text] [Related]
14. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing. Fu C; Zhou X; Wang Y; Xu P; Xu M; Wu D; Luo J; Zhao C; Zhang SL Materials (Basel); 2016 Apr; 9(5):. PubMed ID: 28773440 [TBL] [Abstract][Full Text] [Related]
15. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy. Sun Z; Hazut O; Huang BC; Chiu YP; Chang CS; Yerushalmi R; Lauhon LJ; Seidman DN Nano Lett; 2016 Jul; 16(7):4490-500. PubMed ID: 27351447 [TBL] [Abstract][Full Text] [Related]
16. Controlling the dopant dose in silicon by mixed-monolayer doping. Ye L; Pujari SP; Zuilhof H; Kudernac T; de Jong MP; van der Wiel WG; Huskens J ACS Appl Mater Interfaces; 2015 Feb; 7(5):3231-6. PubMed ID: 25607722 [TBL] [Abstract][Full Text] [Related]
17. Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping. Alphazan T; Díaz Álvarez A; Martin F; Grampeix H; Enyedi V; Martinez E; Rochat N; Veillerot M; Dewitte M; Nys JP; Berthe M; Stiévenard D; Thieuleux C; Grandidier B ACS Appl Mater Interfaces; 2017 Jun; 9(23):20179-20187. PubMed ID: 28534397 [TBL] [Abstract][Full Text] [Related]
18. Controlled nanoscale doping of semiconductors via molecular monolayers. Ho JC; Yerushalmi R; Jacobson ZA; Fan Z; Alley RL; Javey A Nat Mater; 2008 Jan; 7(1):62-7. PubMed ID: 17994026 [TBL] [Abstract][Full Text] [Related]
19. Wafer-scale, sub-5 nm junction formation by monolayer doping and conventional spike annealing. Ho JC; Yerushalmi R; Smith G; Majhi P; Bennett J; Halim J; Faifer VN; Javey A Nano Lett; 2009 Feb; 9(2):725-30. PubMed ID: 19161334 [TBL] [Abstract][Full Text] [Related]