These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33458726)

  • 1. Combined DFT and kinetic Monte Carlo study of a bridging-spillover mechanism on fluorine-decorated graphene.
    Guo JH; Liu JX; Wang HB; Liu HY; Chen G
    Phys Chem Chem Phys; 2021 Jan; 23(3):2384-2391. PubMed ID: 33458726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of hydrogen spillover on Pt-decorated carbon nanocones for enhancing hydrogen storage capacity: A DFT mechanistic study.
    Yodsin N; Rungnim C; Promarak V; Namuangruk S; Kungwan N; Rattanawan R; Jungsuttiwong S
    Phys Chem Chem Phys; 2018 Aug; 20(32):21194-21203. PubMed ID: 30083668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of Hydrogen Adsorption on the Simultaneously Decorated Graphene Sheet with Titanium and Palladium Atoms.
    Tavakkoli Heravi MJ; Farhadian N
    Langmuir; 2024 Jul; 40(27):13879-13891. PubMed ID: 38922333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes.
    Juarez-Mosqueda R; Mavrandonakis A; Kuc AB; Pettersson LG; Heine T
    Front Chem; 2015; 3():2. PubMed ID: 25699250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen spillover mechanism on covalent organic frameworks as investigated by ab initio density functional calculation.
    Guo JH; Zhang H; Tang Y; Cheng X
    Phys Chem Chem Phys; 2013 Feb; 15(8):2873-81. PubMed ID: 23338125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations.
    Taioli S
    J Mol Model; 2014 Jul; 20(7):2260. PubMed ID: 24939464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of Long-Life Pt/Heteroatom-Doped Graphene Catalysts in Hydrogen Atmosphere.
    Hasegawa S; Kunisada Y; Sakaguchi N
    ACS Omega; 2019 Apr; 4(4):6573-6584. PubMed ID: 31459787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanistic study of hydrogen spillover in MoO(3) and carbon-based graphitic materials.
    Chen L; Pez G; Cooper AC; Cheng H
    J Phys Condens Matter; 2008 Feb; 20(6):064223. PubMed ID: 21693885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT study of hydrogen storage by spillover on graphite with oxygen surface groups.
    Psofogiannakis GM; Froudakis GE
    J Am Chem Soc; 2009 Oct; 131(42):15133-5. PubMed ID: 19919158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-mediated cooperative migration of chemisorbed hydrogen on graphene.
    Zhao Y; Gennett T
    Phys Rev Lett; 2014 Feb; 112(7):076101. PubMed ID: 24579617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion, adsorption, and desorption of molecular hydrogen on graphene and in graphite.
    Petucci J; LeBlond C; Karimi M; Vidali G
    J Chem Phys; 2013 Jul; 139(4):044706. PubMed ID: 23902002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physisorption, Diffusion, and Chemisorption Pathways of H2 Molecule on Graphene and on (2,2) Carbon Nanotube by First Principles Calculations.
    Costanzo F; Silvestrelli PL; Ancilotto F
    J Chem Theory Comput; 2012 Apr; 8(4):1288-94. PubMed ID: 26596745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice mismatch induced nonlinear growth of graphene.
    Wu P; Jiang H; Zhang W; Li Z; Hou Z; Yang J
    J Am Chem Soc; 2012 Apr; 134(13):6045-51. PubMed ID: 22401172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DFT study of halogen atoms adsorbed on graphene layers.
    Medeiros PV; Mascarenhas AJ; de Brito Mota F; de Castilho CM
    Nanotechnology; 2010 Dec; 21(48):485701. PubMed ID: 21063056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene.
    Khosravi A; Fereidoon A; Ahangari MG; Ganji MD; Emami SN
    J Mol Model; 2014 May; 20(5):2230. PubMed ID: 24777315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.
    Damte JY; Lyu SL; Leggesse EG; Jiang JC
    Phys Chem Chem Phys; 2018 Apr; 20(14):9355-9363. PubMed ID: 29564450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab Initio Molecular Dynamics Study of H
    Li Y; Wang D
    Chemphyschem; 2023 Oct; 24(19):e202300369. PubMed ID: 37439149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H-Spillover through the Catalyst Saturation: An Ab Initio Thermodynamics Study.
    Singh AK; Ribas MA; Yakobson BI
    ACS Nano; 2009 Jul; 3(7):1657-62. PubMed ID: 19534542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.
    Adams RD; Captain B; Smith MD; Beddie C; Hall MB
    J Am Chem Soc; 2007 May; 129(18):5981-91. PubMed ID: 17439219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.