These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33458946)

  • 1. Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance.
    Zoheir AE; Späth GP; Niemeyer CM; Rabe KS
    Small; 2021 Mar; 17(10):e2007166. PubMed ID: 33458946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Chip for Studies of the Dynamics of Antibiotic Resistance Selection in Bacterial Biofilms.
    Tang PC; Eriksson O; Sjögren J; Fatsis-Kavalopoulos N; Kreuger J; Andersson DI
    Front Cell Infect Microbiol; 2022; 12():896149. PubMed ID: 35619647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics for adaptation of microorganisms to stress: design and application.
    Zoheir AE; Stolle C; Rabe KS
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):162. PubMed ID: 38252163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device.
    Kim KP; Kim YG; Choi CH; Kim HE; Lee SH; Chang WS; Lee CS
    Lab Chip; 2010 Dec; 10(23):3296-9. PubMed ID: 20938507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment.
    Subramanian S; Gerasopoulos K; Guo M; Sintim HO; Bentley WE; Ghodssi R
    Biomed Microdevices; 2016 Oct; 18(5):95. PubMed ID: 27647148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification of antibiotic resistance using droplet microfluidics.
    Keays MC; O'Brien M; Hussain A; Kiely PA; Dalton T
    Bioengineered; 2016 Apr; 7(2):79-87. PubMed ID: 26942773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of Resistant
    Nagy K; Dukic B; Hodula O; Ábrahám Á; Csákvári E; Dér L; Wetherington MT; Noorlag J; Keymer JE; Galajda P
    Front Microbiol; 2022; 13():820738. PubMed ID: 35391738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.
    Postek W; Garstecki P
    Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Access to high-impact mutations constrains the evolution of antibiotic resistance in soft agar.
    Ghaddar N; Hashemidahaj M; Findlay BL
    Sci Rep; 2018 Nov; 8(1):17023. PubMed ID: 30451932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip spectroscopic assessment of microbial susceptibility to antibiotics within 3.5 hours.
    Schröder UC; Kirchhoff J; Hübner U; Mayer G; Glaser U; Henkel T; Pfister W; Fritzsche W; Popp J; Neugebauer U
    J Biophotonics; 2017 Nov; 10(11):1547-1557. PubMed ID: 28464521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance.
    Usui M; Yoshii Y; Thiriet-Rupert S; Ghigo JM; Beloin C
    Commun Biol; 2023 Mar; 6(1):275. PubMed ID: 36928386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms.
    Ahmed MN; Porse A; Abdelsamad A; Sommer M; Høiby N; Ciofu O
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31307984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation.
    Pérez-Rodríguez S; García-Aznar JM; Gonzalo-Asensio J
    Microb Biotechnol; 2022 Feb; 15(2):395-414. PubMed ID: 33645897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput integrated biofilm-on-a-chip platform for the investigation of combinatory physicochemical responses to chemical and fluid shear stress.
    Nguyen AV; Shourabi AY; Yaghoobi M; Zhang S; Simpson KW; Abbaspourrad A
    PLoS One; 2022; 17(8):e0272294. PubMed ID: 35960726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies.
    Kong T; Backes N; Kalwa U; Legner C; Phillips GJ; Pandey S
    ACS Sens; 2019 Oct; 4(10):2638-2645. PubMed ID: 31583880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli.
    Hoeksema M; Jonker MJ; Brul S; Ter Kuile BH
    BMC Genomics; 2019 Apr; 20(1):284. PubMed ID: 30975082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofluidic Immobilization and Growth Detection of
    Busche JF; Möller S; Klein AK; Stehr M; Purr F; Bassu M; Burg TP; Dietzel A
    Biosensors (Basel); 2020 Sep; 10(10):. PubMed ID: 32992799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic gradient mixer-flow chamber as a new tool to study biofilm development under defined solute gradients.
    Zhang Y; Li C; Wu Y; Zhang Y; Zhou Z; Cao B
    Biotechnol Bioeng; 2019 Jan; 116(1):54-64. PubMed ID: 30320445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical
    Allen RC; Pfrunder-Cardozo KR; Meinel D; Egli A; Hall AR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review.
    Zhu X; Wang K; Yan H; Liu C; Zhu X; Chen B
    Environ Sci Technol; 2022 Jan; 56(2):711-731. PubMed ID: 34985862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.