These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33459010)
1. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface. Huang L; Yao Y; Peng Z; Zhang B; Chen S J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010 [TBL] [Abstract][Full Text] [Related]
2. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces. He X; Wang YF; Zhang BX; Wang SL; Yang YR; Wang XD; Lee DJ Langmuir; 2021 Dec; 37(50):14571-14581. PubMed ID: 34894696 [TBL] [Abstract][Full Text] [Related]
3. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Garcia-Gonzalez D; Corrales TP; Dacunzi M; Kappl M Langmuir; 2022 Dec; 38(48):14666-14672. PubMed ID: 36410035 [TBL] [Abstract][Full Text] [Related]
4. Controlling states of water droplets on nanostructured surfaces by design. Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978 [TBL] [Abstract][Full Text] [Related]
5. Revisiting the Critical Condition for the Cassie-Wenzel Transition on Micropillar-Structured Surfaces. Fang W; Guo HY; Li B; Li Q; Feng XQ Langmuir; 2018 Apr; 34(13):3838-3844. PubMed ID: 29513543 [TBL] [Abstract][Full Text] [Related]
6. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces. Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996 [TBL] [Abstract][Full Text] [Related]
7. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls. Amabili M; Meloni S; Giacomello A; Casciola CM J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302 [TBL] [Abstract][Full Text] [Related]
8. Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer. Fan L; Yan Q; Qian Q; Zhang S; Wu L; Peng Y; Jiang S; Guo L; Yao J; Wu H ACS Appl Mater Interfaces; 2022 Aug; 14(31):36246-36257. PubMed ID: 35881172 [TBL] [Abstract][Full Text] [Related]
9. Robust Cassie state of wetting in transparent superhydrophobic coatings. Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study. Wang J; Chen S; Chen D Phys Chem Chem Phys; 2015 Nov; 17(45):30533-9. PubMed ID: 26524012 [TBL] [Abstract][Full Text] [Related]
11. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
12. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Lin HP; Chen LJ J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950 [TBL] [Abstract][Full Text] [Related]
13. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces. Shi S; Lv C; Zheng Q Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478 [TBL] [Abstract][Full Text] [Related]
14. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
15. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
16. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures. Im M; Im H; Lee JH; Yoon JB; Choi YK Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754 [TBL] [Abstract][Full Text] [Related]
17. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces. Aldhaleai A; Tsai PA Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121 [TBL] [Abstract][Full Text] [Related]
18. Free-Energy Barrier of Filling a Spherical Cavity in the Presence of Line Tension: Implication to the Energy Barrier between the Cassie and Wenzel States on a Superhydrophobic Surface with Spherical Cavities. Iwamatsu M Langmuir; 2016 Sep; 32(37):9475-83. PubMed ID: 27564853 [TBL] [Abstract][Full Text] [Related]
19. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867 [TBL] [Abstract][Full Text] [Related]
20. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting. Roy R; Weibel JA; Garimella SV Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]