BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33459012)

  • 21. A method to produce fully characterized ubiquitin covalently modified by 4-hydroxy-nonenal, glyoxal, methylglyoxal, and malondialdehyde.
    Colzani M; Criscuolo A; Casali G; Carini M; Aldini G
    Free Radic Res; 2016; 50(3):328-36. PubMed ID: 26554438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scavenging Glyoxal and Methylglyoxal by Synephrine and Neohesperidin from Flowers of
    Liang Y; Zhao X; Xu Y; Lu Y; Lv L
    J Agric Food Chem; 2024 Apr; 72(14):8027-8038. PubMed ID: 38529939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidant properties of Mediterranean spices compared with common food additives.
    Martínez-Tomé M; Jiménez AM; Ruggieri S; Frega N; Strabbioli R; Murcia MA
    J Food Prot; 2001 Sep; 64(9):1412-9. PubMed ID: 11563520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trapping effects of green and black tea extracts on peroxidation-derived carbonyl substances of seal blubber oil.
    Zhu Q; Liang CP; Cheng KW; Peng X; Lo CY; Shahidi F; Chen F; Ho CT; Wang M
    J Agric Food Chem; 2009 Feb; 57(3):1065-9. PubMed ID: 19154106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis, distribution, and dietary exposure of glyoxal and methylglyoxal in cookies and their relationship with other heat-induced contaminants.
    Arribas-Lorenzo G; Morales FJ
    J Agric Food Chem; 2010 Mar; 58(5):2966-72. PubMed ID: 20131787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition Mechanism of Catechin, Resveratrol, Butylated Hydroxylanisole, and Tert-Butylhydroquinone on Carboxymethyl 1,2-Dipalmitoyl-sn-Glycero-3-Phosphatidylethanolamine Formation.
    Han L; Lin Q; Liu G; Han D; Niu L; Su D
    J Food Sci; 2019 Aug; 84(8):2042-2049. PubMed ID: 31313292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipidomic analysis for carbonyl species derived from fish oil using liquid chromatography-tandem mass spectrometry.
    Suh JH; Niu YS; Hung WL; Ho CT; Wang Y
    Talanta; 2017 Jun; 168():31-42. PubMed ID: 28391860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid determination of butylated hydroxyanisole, tert- butylhydroquinone, and propyl gallate in edible oils by electron capture gas-liquid chromatography.
    Page BD; Kennedy BP
    J Assoc Off Anal Chem; 1976 Nov; 59(6):1208-12. PubMed ID: 993173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Method validation and measurement uncertainty for the simultaneous determination of synthetic phenolic antioxidants in edible oils commonly consumed in Korea.
    Kim JM; Choi SH; Shin GH; Lee JH; Kang SR; Lee KY; Lim HS; Kang TS; Lee OH
    Food Chem; 2016 Dec; 213():19-25. PubMed ID: 27451150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of reaction products of 5-hydroxytryptamine with methylglyoxal and glyoxal by liquid chromatography/tandem mass spectrometry.
    Sai Sachin L; Nagarjuna Chary R; Pavankumar P; Prabhakar S
    Rapid Commun Mass Spectrom; 2018 Sep; 32(17):1529-1539. PubMed ID: 29874403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Food additive octyl gallate eliminates acrolein and inhibits bacterial growth in oil-rich food.
    Qiu C; Lu Y; Gu H; Jia M; Wang J; Zhang Q; Lv L
    Food Chem; 2022 Nov; 395():133546. PubMed ID: 35802979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions.
    Li C; Jia H; Shen M; Wang Y; Nie S; Chen Y; Zhou Y; Wang Y; Xie M
    J Agric Food Chem; 2015 Nov; 63(44):9850-4. PubMed ID: 26478126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action.
    Xu X; Liu A; Hu S; Ares I; Martínez-Larrañaga MR; Wang X; Martínez M; Anadón A; Martínez MA
    Food Chem; 2021 Aug; 353():129488. PubMed ID: 33714793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prevention by synthetic phenolic antioxidants of 2-amino-3, 8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)- or activated MeIQx-induced mutagenesis and MeIQx-induced rat hepatocarcinogenesis, and role of antioxidant activity in the prevention of carcinogenesis.
    Hirose M; Ito T; Takahashi S; Ozaki M; Ogiso T; Nihro Y; Miki T; Shirai T
    Eur J Cancer Prev; 1998 Jun; 7(3):233-41. PubMed ID: 9696932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced glycation end products of beta2-microglobulin in uremic patients as determined by high resolution mass spectrometry.
    Bertoletti L; Regazzoni L; Altomare A; Colombo R; Colzani M; Vistoli G; Marchese L; Carini M; De Lorenzi E; Aldini G
    J Pharm Biomed Anal; 2014 Mar; 91():193-201. PubMed ID: 24469019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidant and pro-oxidant actions of resveratrol on human serum albumin in the presence of toxic diabetes metabolites: Glyoxal and methyl-glyoxal.
    Arcanjo NMO; Luna C; Madruga MS; Estévez M
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):1938-1947. PubMed ID: 29902553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural polyphenols as direct trapping agents of lipid peroxidation-derived acrolein and 4-hydroxy-trans-2-nonenal.
    Zhu Q; Zheng ZP; Cheng KW; Wu JJ; Zhang S; Tang YS; Sze KH; Chen J; Chen F; Wang M
    Chem Res Toxicol; 2009 Oct; 22(10):1721-7. PubMed ID: 19743801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells.
    Akhand AA; Hossain K; Mitsui H; Kato M; Miyata T; Inagi R; Du J; Takeda K; Kawamoto Y; Suzuki H; Kurokawa K; Nakashima I
    Free Radic Biol Med; 2001 Jul; 31(1):20-30. PubMed ID: 11425486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.