These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 33459013)

  • 21. Quantum Dot Acceptors in Two-Dimensional Epitaxially Fused PbSe Quantum Dot Superlattices.
    Notot V; Walravens W; Berthe M; Peric N; Addad A; Wallart X; Delerue C; Hens Z; Grandidier B; Biadala L
    ACS Nano; 2022 Feb; 16(2):3081-3091. PubMed ID: 35156366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composition-Defined Optical Properties and the Direct-to-Indirect Transition in Core-Shell In
    Gupta A; Ondry JC; Lin K; Chen Y; Hudson MH; Chen M; Schaller RD; Rossini AJ; Rabani E; Talapin DV
    J Am Chem Soc; 2023 Aug; 145(30):16429-16448. PubMed ID: 37466972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.
    Dang C; Lee J; Breen C; Steckel JS; Coe-Sullivan S; Nurmikko A
    Nat Nanotechnol; 2012 Apr; 7(5):335-9. PubMed ID: 22543426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy.
    Park YS; Bae WK; Padilha LA; Pietryga JM; Klimov VI
    Nano Lett; 2014 Feb; 14(2):396-402. PubMed ID: 24397307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination.
    Jain A; Voznyy O; Hoogland S; Korkusinski M; Hawrylak P; Sargent EH
    Nano Lett; 2016 Oct; 16(10):6491-6496. PubMed ID: 27668685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.
    Park YS; Guo S; Makarov NS; Klimov VI
    ACS Nano; 2015 Oct; 9(10):10386-93. PubMed ID: 26312994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification technologies for colloidal nanocrystals.
    Shen Y; Gee MY; Greytak AB
    Chem Commun (Camb); 2017 Jan; 53(5):827-841. PubMed ID: 27942615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization and dynamics of long-lived excitations in colloidal semiconductor nanocrystals with dual quantum confinement.
    Liu S; Borys NJ; Sapra S; Eychmüller A; Lupton JM
    Chemphyschem; 2015 Jun; 16(8):1663-9. PubMed ID: 25807918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths.
    Cui J; Beyler AP; Coropceanu I; Cleary L; Avila TR; Chen Y; Cordero JM; Heathcote SL; Harris DK; Chen O; Cao J; Bawendi MG
    Nano Lett; 2016 Jan; 16(1):289-96. PubMed ID: 26636347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.
    Pu C; Qin H; Gao Y; Zhou J; Wang P; Peng X
    J Am Chem Soc; 2017 Mar; 139(9):3302-3311. PubMed ID: 28170239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures.
    Choi CL; Alivisatos AP
    Annu Rev Phys Chem; 2010; 61():369-89. PubMed ID: 20055683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot.
    Flatae AM; Tantussi F; Messina GC; De Angelis F; Agio M
    J Phys Chem Lett; 2019 Jun; 10(11):2874-2878. PubMed ID: 31084012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence in Support of Exciton to Ligand Vibrational Coupling in Colloidal Quantum Dots.
    Lifshitz E
    J Phys Chem Lett; 2015 Nov; 6(21):4336-47. PubMed ID: 26538048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures.
    Swart I; Liljeroth P; Vanmaekelbergh D
    Chem Rev; 2016 Sep; 116(18):11181-219. PubMed ID: 26900754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement.
    Liu Y; Peard N; Grossman JC
    J Phys Chem Lett; 2019 Jul; 10(13):3756-3762. PubMed ID: 31185712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
    Ardelt PL; Gawarecki K; Müller K; Waeber AM; Bechtold A; Oberhofer K; Daniels JM; Klotz F; Bichler M; Kuhn T; Krenner HJ; Machnikowski P; Finley JJ
    Phys Rev Lett; 2016 Feb; 116(7):077401. PubMed ID: 26943557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.