These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33459151)
1. Difference in potential DNA methylation impact on gene expression between fast- and slow-type myofibers. Oe M; Ojima K; Muroya S Physiol Genomics; 2021 Feb; 53(2):69-83. PubMed ID: 33459151 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers. Wang JH; Wang QJ; Wang C; Reinholt B; Grant AL; Gerrard DE; Kuang S Dev Biol; 2015 Jun; 402(1):72-80. PubMed ID: 25794679 [TBL] [Abstract][Full Text] [Related]
3. Myosin content of individual human muscle fibers isolated by laser capture microdissection. Stuart CA; Stone WL; Howell ME; Brannon MF; Hall HK; Gibson AL; Stone MH Am J Physiol Cell Physiol; 2016 Mar; 310(5):C381-9. PubMed ID: 26676053 [TBL] [Abstract][Full Text] [Related]
4. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers. Begue G; Raue U; Jemiolo B; Trappe S J Appl Physiol (1985); 2017 Apr; 122(4):952-967. PubMed ID: 28057818 [TBL] [Abstract][Full Text] [Related]
5. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Pandorf CE; Haddad F; Wright C; Bodell PW; Baldwin KM Am J Physiol Cell Physiol; 2009 Jul; 297(1):C6-16. PubMed ID: 19369448 [TBL] [Abstract][Full Text] [Related]
6. Myostatin facilitates slow and inhibits fast myosin heavy chain expression during myogenic differentiation. Wang M; Yu H; Kim YS; Bidwell CA; Kuang S Biochem Biophys Res Commun; 2012 Sep; 426(1):83-8. PubMed ID: 22910409 [TBL] [Abstract][Full Text] [Related]
7. Novel epigenetic regulation of skeletal muscle myosin heavy chain genes. Focus on "Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading". Zwetsloot KA; Laye MJ; Booth FW Am J Physiol Cell Physiol; 2009 Jul; 297(1):C1-3. PubMed ID: 19403799 [No Abstract] [Full Text] [Related]
8. Common core sequences are found in skeletal muscle slow- and fast-fiber-type-specific regulatory elements. Nakayama M; Stauffer J; Cheng J; Banerjee-Basu S; Wawrousek E; Buonanno A Mol Cell Biol; 1996 May; 16(5):2408-17. PubMed ID: 8628309 [TBL] [Abstract][Full Text] [Related]
9. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. DiMario JX; Stockdale FE Dev Biol; 1997 Aug; 188(1):167-80. PubMed ID: 9245520 [TBL] [Abstract][Full Text] [Related]
10. The calcineurin-NFAT pathway and muscle fiber-type gene expression. Swoap SJ; Hunter RB; Stevenson EJ; Felton HM; Kansagra NV; Lang JM; Esser KA; Kandarian SC Am J Physiol Cell Physiol; 2000 Oct; 279(4):C915-24. PubMed ID: 11003571 [TBL] [Abstract][Full Text] [Related]
11. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. Chemello F; Bean C; Cancellara P; Laveder P; Reggiani C; Lanfranchi G PLoS One; 2011 Feb; 6(2):e16807. PubMed ID: 21364935 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of ryanodine receptor 1 in fast skeletal muscle fibers induces a fast-to-slow muscle fiber type transition. Jordan T; Jiang H; Li H; DiMario JX J Cell Sci; 2004 Dec; 117(Pt 25):6175-83. PubMed ID: 15564379 [TBL] [Abstract][Full Text] [Related]
13. Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury. Matsuura T; Li Y; Giacobino JP; Fu FH; Huard J J Orthop Res; 2007 Nov; 25(11):1534-40. PubMed ID: 17593537 [TBL] [Abstract][Full Text] [Related]
14. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle. Leeuw T; Pette D Dev Genet; 1996; 19(2):163-8. PubMed ID: 8900049 [TBL] [Abstract][Full Text] [Related]
15. Fine mapping of five human skeletal muscle genes: alpha-tropomyosin, beta-tropomyosin, troponin-I slow-twitch, troponin-I fast-twitch, and troponin-C fast. Tiso N; Rampoldi L; Pallavicini A; Zimbello R; Pandolfo D; Valle G; Lanfranchi G; Danieli GA Biochem Biophys Res Commun; 1997 Jan; 230(2):347-50. PubMed ID: 9016781 [TBL] [Abstract][Full Text] [Related]
16. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice. Zhang P; Li W; Liu H; Li J; Wang J; Li Y; Chen X; Yang Z; Fan M Cell Biochem Biophys; 2014 Nov; 70(2):1057-67. PubMed ID: 24839113 [TBL] [Abstract][Full Text] [Related]
17. Severe atrophy of slow myofibers in aging muscle is concealed by myosin heavy chain co-expression. Purves-Smith FM; Solbak NM; Rowan SL; Hepple RT Exp Gerontol; 2012 Dec; 47(12):913-8. PubMed ID: 22884852 [TBL] [Abstract][Full Text] [Related]
18. One week, but not 12 hours, of cast immobilization alters promotor DNA methylation patterns in the nNOS gene in mouse skeletal muscle. Tomiga Y; Ito A; Sudo M; Ando S; Eshima H; Sakai K; Nakashima S; Uehara Y; Tanaka H; Soejima H; Higaki Y J Physiol; 2019 Nov; 597(21):5145-5159. PubMed ID: 31490543 [TBL] [Abstract][Full Text] [Related]
19. circUSP13 facilitates the fast-to-slow myofiber shift via the MAPK/ERK signaling pathway in goat skeletal muscles. Zhang Z; Kang Z; Deng K; Li J; Liu Z; Huang X; Wang F; Fan Y J Cell Physiol; 2024 May; 239(5):e31226. PubMed ID: 38591363 [TBL] [Abstract][Full Text] [Related]
20. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Honda M; Hidaka K; Fukada SI; Sugawa R; Shirai M; Ikawa M; Morisaki T Sci Rep; 2017 Aug; 7(1):7168. PubMed ID: 28769032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]