BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3345920)

  • 1. Quantitation of intracellular oxidation in a renal epithelial cell line.
    Scott JA; Homcy CJ; Khaw BA; Rabito CA
    Free Radic Biol Med; 1988; 4(2):79-83. PubMed ID: 3345920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation pathways for the intracellular probe 2',7'-dichlorofluorescein.
    Zhu H; Bannenberg GL; Moldéus P; Shertzer HG
    Arch Toxicol; 1994; 68(9):582-7. PubMed ID: 7998826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress.
    LeBel CP; Ischiropoulos H; Bondy SC
    Chem Res Toxicol; 1992; 5(2):227-31. PubMed ID: 1322737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells.
    Scott JA; Khaw BA; Homcy CJ; Rabito CA
    Biochim Biophys Acta; 1987 Feb; 897(1):25-32. PubMed ID: 3801479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry.
    Guthrie HD; Welch GR
    J Anim Sci; 2006 Aug; 84(8):2089-100. PubMed ID: 16864869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells.
    Hiraishi H; Terano A; Ota S; Ivey KJ; Sugimoto T
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G40-8. PubMed ID: 3111274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of active oxygen species on damage to and prostaglandin synthesis in cultured rat gastric cells.
    Sakuma H; Arakawa T; Kobayashi K
    Osaka City Med J; 1992 Jun; 38(1):45-65. PubMed ID: 1326736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcein-AM is a detector of intracellular oxidative activity.
    Uggeri J; Gatti R; Belletti S; Scandroglio R; Corradini R; Rotoli BM; Orlandini G
    Histochem Cell Biol; 2004 Nov; 122(5):499-505. PubMed ID: 15503120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation.
    Fong KL; McCay PB; Poyer JL
    Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of DMSO and methanesulfinic acid by the hydroxyl radical.
    Scaduto RC
    Free Radic Biol Med; 1995 Feb; 18(2):271-7. PubMed ID: 7744311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium and free radicals in hypoxia/reoxygenation injury of renal epithelial cells.
    Greene EL; Paller MS
    Am J Physiol; 1994 Jan; 266(1 Pt 2):F13-20. PubMed ID: 8304479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oxygen radicals on substrate oxidation by cardiac myocytes.
    McDonough KH; Henry JJ; Spitzer JJ
    Biochim Biophys Acta; 1987 Nov; 926(2):127-31. PubMed ID: 2822138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a tyrosyl radical in xanthine oxidase.
    Conrads T; Hemann C; Hille R
    Biochemistry; 1998 May; 37(21):7787-91. PubMed ID: 9601039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.