These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33459454)

  • 41. Annual nitrification dynamics in a seasonally ice-covered lake.
    Massé S; Botrel M; Walsh DA; Maranger R
    PLoS One; 2019; 14(3):e0213748. PubMed ID: 30893339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The structure of winter phytoplankton in Lake Nero, Russia, a hypertrophic lake dominated by Planktothrix-like Cyanobacteria.
    Babanazarova O; Sidelev S; Schischeleva S
    Aquat Biosyst; 2013 Sep; 9(1):18. PubMed ID: 24079446
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiscale drivers of phytoplankton communities in north-temperate lakes.
    Loewen CJG; Wyatt FR; Mortimer CA; Vinebrooke RD; Zurawell RW
    Ecol Appl; 2020 Jul; 30(5):e02102. PubMed ID: 32086975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytoplankton variability in Lake Fraijanes, Costa Rica, in response to local weather variation.
    Umaña-Villalobos G
    Rev Biol Trop; 2014 Jun; 62(2):483-94. PubMed ID: 25102633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Spatio-temporal Characteristics of Organic Aggregates and the Driving Factors in Typical Lakes].
    Xie GJ; Gong Y; Zhu FC; Liu CL; Lu BW; Deng H; Tang XM
    Huan Jing Ke Xue; 2023 Apr; 44(4):2052-2061. PubMed ID: 37040955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Warmer winters: are planktonic algal populations in Sweden's largest lakes affected?
    Weyhenmeyer GA
    Ambio; 2001 Dec; 30(8):565-71. PubMed ID: 11878032
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Algal Community Change in Mountain Lakes of the Alps Reveals Effects of Climate Warming and Shifting Treelines
    Kuefner W; Hofmann AM; Geist J; Dubois N; Raeder U
    J Phycol; 2021 Aug; 57(4):1266-1283. PubMed ID: 33751611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unbalanced impacts of nature and nurture factors on the phenology, area and intensity of algal blooms in global large lakes: MODIS observations.
    Ma J; Loiselle S; Cao Z; Qi T; Shen M; Luo J; Song K; Duan H
    Sci Total Environ; 2023 Jul; 880():163376. PubMed ID: 37031931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes.
    Tran P; Ramachandran A; Khawasik O; Beisner BE; Rautio M; Huot Y; Walsh DA
    Environ Microbiol; 2018 Jul; 20(7):2568-2584. PubMed ID: 29921005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of turbulence on phytoplankton and implications for energy transfer with an integrated water quality-ecosystem model in a shallow lake.
    Zhao G; Gao X; Zhang C; Sang G
    J Environ Manage; 2020 Feb; 256():109954. PubMed ID: 31822459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Causal relationships of Raphidiopsis (formerly Cylindrospermopsis) dynamics with water temperature and N:P-ratios: A meta-analysis across lakes with different climates based on inferential modelling.
    Recknagel F; Zohary T; Rücker J; Orr PT; Branco CC; Nixdorf B
    Harmful Algae; 2019 Apr; 84():222-232. PubMed ID: 31128807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Peculiarities of Phenology of the Primary Production Process in the Pelagic Zone of Lake Onega].
    Tekanova EV; Syarki MT
    Izv Akad Nauk Ser Biol; 2015; (6):645-52. PubMed ID: 26852484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diatom assemblages promote ice formation in large lakes.
    D'souza NA; Kawarasaki Y; Gantz JD; Lee RE; Beall BF; Shtarkman YM; Koçer ZA; Rogers SO; Wildschutte H; Bullerjahn GS; McKay RM
    ISME J; 2013 Aug; 7(8):1632-40. PubMed ID: 23552624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of climate change and oligotrophication on quality and quantity of lake primary production: A case study in Lake Biwa.
    Kazama T; Hayakawa K; Nagata T; Shimotori K; Imai A
    Sci Total Environ; 2024 Jun; 927():172266. PubMed ID: 38583615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrative Indicator for Assessing the Alert Levels of Algal Bloom in Lakes: Lake Taihu as a Case Study.
    Li Q; Hu W; Zhai S
    Environ Manage; 2016 Jan; 57(1):237-50. PubMed ID: 26296739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The influence of water quality variables on cyanobacterial blooms and phytoplankton community composition in a shallow temperate lake.
    Lee TA; Rollwagen-Bollens G; Bollens SM
    Environ Monit Assess; 2015 Jun; 187(6):315. PubMed ID: 25937495
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.
    Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB
    Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytoplankton blooms in Lake Winnipeg linked to selective water-gatekeeper connectivity.
    Ali G; English C
    Sci Rep; 2019 Jun; 9(1):8395. PubMed ID: 31182791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phytoplankton Functional Groups Variation and Influencing Factors in a Shallow Temperate Lake.
    Tian C; Hao D; Pei H; Doblin MA; Ren Y; Wei J; Feng Y
    Water Environ Res; 2018 Jun; 90(6):510-519. PubMed ID: 29789042
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Attribution of Lake Warming in Four Shallow Lakes in the Middle and Lower Yangtze River Basin.
    Li X; Peng S; Deng X; Su M; Zeng H
    Environ Sci Technol; 2019 Nov; 53(21):12548-12555. PubMed ID: 31600439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.