These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33459475)

  • 41. Members of the NPF3 transporter subfamily encode pathogen-inducible nitrate/nitrite transporters in grapevine and Arabidopsis.
    Pike S; Gao F; Kim MJ; Kim SH; Schachtman DP; Gassmann W
    Plant Cell Physiol; 2014 Jan; 55(1):162-70. PubMed ID: 24259683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator.
    Zhao H; Guan X; Xu Y; Wang Y
    Protoplasma; 2013 Jun; 250(3):765-77. PubMed ID: 23090239
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant.
    Gao F; Shu X; Ali MB; Howard S; Li N; Winterhagen P; Qiu W; Gassmann W
    Planta; 2010 Apr; 231(5):1037-47. PubMed ID: 20145949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Comparative Analysis of Microbe-Based Technologies Developed at ICAR-NBAIM Against
    Malviya D; Thosar R; Kokare N; Pawar S; Singh UB; Saha S; Rai JP; Singh HV; Somkuwar RG; Saxena AK
    Front Microbiol; 2022; 13():871901. PubMed ID: 35663883
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of a decision support strategy for the control of powdery mildew, Erysiphe necator (Schw.) Burr., in grapevine in the central region of Chile.
    Valdés-Gómez H; Araya-Alman M; Pañitrur-De la Fuente C; Verdugo-Vásquez N; Lolas M; Acevedo-Opazo C; Gary C; Calonnec A
    Pest Manag Sci; 2017 Sep; 73(9):1813-1821. PubMed ID: 28156050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays.
    Dufour MC; Fontaine S; Montarry J; Corio-Costet MF
    Pest Manag Sci; 2011 Jan; 67(1):60-9. PubMed ID: 20949585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and structure of the mating-type locus and development of PCR-based markers for mating type in powdery mildew fungi.
    Brewer MT; Cadle-Davidson L; Cortesi P; Spanu PD; Milgroom MG
    Fungal Genet Biol; 2011 Jul; 48(7):704-13. PubMed ID: 21515399
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Up-regulated transcripts in a compatible powdery mildew-grapevine interaction.
    Fekete C; Fung RW; Szabó Z; Qiu W; Chang L; Schachtman DP; Kovács LG
    Plant Physiol Biochem; 2009 Aug; 47(8):732-8. PubMed ID: 19362490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Nighttime Applications of Germicidal Ultraviolet Light Upon Powdery Mildew (
    Gadoury DM; Sapkota S; Cadle-Davidson L; Underhill A; McCann T; Gold KM; Gambhir N; Combs DB
    Plant Dis; 2023 May; 107(5):1452-1462. PubMed ID: 36281020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew.
    Blanc S; Wiedemann-Merdinoglu S; Dumas V; Mestre P; Merdinoglu D
    Theor Appl Genet; 2012 Dec; 125(8):1663-75. PubMed ID: 22865124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.).
    Marsh E; Alvarez S; Hicks LM; Barbazuk WB; Qiu W; Kovacs L; Schachtman D
    Proteomics; 2010 May; 10(10):2057-64. PubMed ID: 20232356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria.
    Wen Z; Yao L; Singer SD; Muhammad H; Li Z; Wang X
    Plant Physiol Biochem; 2017 Mar; 112():346-361. PubMed ID: 28131063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew.
    Gao F; Dai R; Pike SM; Qiu W; Gassmann W
    Plant Mol Biol; 2014 Nov; 86(4-5):381-93. PubMed ID: 25107649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of powdery mildew resistance in the Vitaceae family.
    Feechan A; Kabbara S; Dry IB
    Mol Plant Pathol; 2011 Apr; 12(3):263-74. PubMed ID: 21355998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Baseline sensitivity to proquinazid in Blumeria graminis f. sp. tritici and Erysiphe necator and cross-resistance with other fungicides.
    Genet JL; Jaworska G
    Pest Manag Sci; 2009 Aug; 65(8):878-84. PubMed ID: 19418441
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Fayyaz L; Tenscher A; Viet Nguyen A; Qazi H; Walker MA
    Plant Dis; 2021 Sep; 105(9):2418-2425. PubMed ID: 34494871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of long non-coding RNAs as regulatory players of grapevine response to powdery and downy mildew infection.
    Bhatia G; Upadhyay SK; Upadhyay A; Singh K
    BMC Plant Biol; 2021 Jun; 21(1):265. PubMed ID: 34103007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Fungicide Mobility and Application Timing on the Management of Grape Powdery Mildew.
    Warneke B; Thiessen LD; Mahaffee WF
    Plant Dis; 2020 Apr; 104(4):1167-1174. PubMed ID: 32053475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and Characterization of Erysiphe necator-Responsive MicroRNAs in Chinese Wild Vitis pseudoreticulata by High-Throughput Sequencing.
    Han L; Weng K; Ma H; Xiang G; Li Z; Wang Y; Liu G; Xu Y
    Front Plant Sci; 2016; 7():621. PubMed ID: 27303408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth.
    Hoffmann S; Di Gaspero G; Kovács L; Howard S; Kiss E; Galbács Z; Testolin R; Kozma P
    Theor Appl Genet; 2008 Feb; 116(3):427-38. PubMed ID: 18064436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.