BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33459779)

  • 1. Large-scale inference of population structure in presence of missingness using PCA.
    Meisner J; Liu S; Huang M; Albrechtsen A
    Bioinformatics; 2021 Jul; 37(13):1868-1875. PubMed ID: 33459779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonrandom missing data can bias Principal Component Analysis inference of population genetic structure.
    Yi X; Latch EK
    Mol Ecol Resour; 2022 Feb; 22(2):602-611. PubMed ID: 34463035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient toolkit implementing best practices for principal component analysis of population genetic data.
    Privé F; Luu K; Blum MGB; McGrath JJ; Vilhjálmsson BJ
    Bioinformatics; 2020 Aug; 36(16):4449-4457. PubMed ID: 32415959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust inference of population structure from next-generation sequencing data with systematic differences in sequencing.
    Liao P; Satten GA; Hu YJ
    Bioinformatics; 2018 Apr; 34(7):1157-1163. PubMed ID: 29186324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian integrative model for multi-omics data with missingness.
    Fang Z; Ma T; Tang G; Zhu L; Yan Q; Wang T; Celedón JC; Chen W; Tseng GC
    Bioinformatics; 2018 Nov; 34(22):3801-3808. PubMed ID: 30184058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and robust ancestry prediction using principal component analysis.
    Zhang D; Dey R; Lee S
    Bioinformatics; 2020 Jun; 36(11):3439-3446. PubMed ID: 32196066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RobustClone: a robust PCA method for tumor clone and evolution inference from single-cell sequencing data.
    Chen Z; Gong F; Wan L; Ma L
    Bioinformatics; 2020 Jun; 36(11):3299-3306. PubMed ID: 32159762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.
    Bhaskar A; Javanmard A; Courtade TA; Tse D
    Bioinformatics; 2017 Mar; 33(6):879-885. PubMed ID: 28025204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FlashPCA2: principal component analysis of Biobank-scale genotype datasets.
    Abraham G; Qiu Y; Inouye M
    Bioinformatics; 2017 Sep; 33(17):2776-2778. PubMed ID: 28475694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TeraPCA: a fast and scalable software package to study genetic variation in tera-scale genotypes.
    Bose A; Kalantzis V; Kontopoulou EM; Elkady M; Paschou P; Drineas P
    Bioinformatics; 2019 Oct; 35(19):3679-3683. PubMed ID: 30957838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRAF-pop: A Fast Distance-Based Method To Infer Subject Ancestry from Multiple Genotype Datasets Without Principal Components Analysis.
    Jin Y; Schaffer AA; Feolo M; Holmes JB; Kattman BL
    G3 (Bethesda); 2019 Aug; 9(8):2447-2461. PubMed ID: 31151998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CoCoNet: an efficient deep learning tool for viral metagenome binning.
    Arisdakessian CG; Nigro OD; Steward GF; Poisson G; Belcaid M
    Bioinformatics; 2021 Sep; 37(18):2803-2810. PubMed ID: 33822891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
    Trinh HC; Kwon YK
    Bioinformatics; 2021 Jul; 37(Suppl_1):i383-i391. PubMed ID: 34252959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data.
    Xue Y; Lanzén A; Jonassen I
    Bioinformatics; 2020 Jun; 36(11):3365-3371. PubMed ID: 32167532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scMatch: a single-cell gene expression profile annotation tool using reference datasets.
    Hou R; Denisenko E; Forrest ARR
    Bioinformatics; 2019 Nov; 35(22):4688-4695. PubMed ID: 31028376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuro-evolution approach to infer a Boolean network from time-series gene expressions.
    Barman S; Kwon YK
    Bioinformatics; 2020 Dec; 36(Suppl_2):i762-i769. PubMed ID: 33381823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward an automatic method for extracting cancer- and other disease-related point mutations from the biomedical literature.
    Doughty E; Kertesz-Farkas A; Bodenreider O; Thompson G; Adadey A; Peterson T; Kann MG
    Bioinformatics; 2011 Feb; 27(3):408-15. PubMed ID: 21138947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.
    Ghosh Roy G; Geard N; Verspoor K; He S
    Bioinformatics; 2021 Jan; 36(21):5187-5193. PubMed ID: 32697830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GMSimpute: a generalized two-step Lasso approach to impute missing values in label-free mass spectrum analysis.
    Li Q; Fisher K; Meng W; Fang B; Welsh E; Haura EB; Koomen JM; Eschrich SA; Fridley BL; Chen YA
    Bioinformatics; 2020 Jan; 36(1):257-263. PubMed ID: 31199438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.