BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33459813)

  • 1. Complete genome sequencing and comparative CAZyme analysis of Rhodococcus sp. PAMC28705 and PAMC28707 provide insight into their biotechnological and phytopathogenic potential.
    Ghimire N; Han SR; Kim B; Jung SH; Park H; Lee JH; Oh TJ
    Arch Microbiol; 2021 May; 203(4):1731-1742. PubMed ID: 33459813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of genome-based CAZyme cassette in Antarctic Microbacterium sp. PAMC28756 with 31 other Microbacterium species.
    Gupta S; Han SR; Kim B; Lee CM; Oh TJ
    Genes Genomics; 2022 Jun; 44(6):733-746. PubMed ID: 35486322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach.
    Han SR; Jang SM; Chi YM; Kim B; Jung SH; Lee YM; Uetake J; Lee JH; Park H; Oh TJ
    Genes Genomics; 2020 Sep; 42(9):1087-1096. PubMed ID: 32737807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi.
    Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T
    BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequencing of Shigella sp. PAMC 28760: Identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation.
    Han SR; Kim DW; Kim B; Chi YM; Kang S; Park H; Jung SH; Lee JH; Oh TJ
    Microb Pathog; 2019 Dec; 137():103759. PubMed ID: 31560973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of Draft Genome Sequence of Rhodococcus sp. Eu-32 with Other Rhodococcus Species for Its Taxonomic Status and Sulfur Metabolism Potential.
    Akhtar N; Ghauri MA; Akhtar K; Parveen S; Farooq M; Ali A; Schierack P
    Curr Microbiol; 2019 Oct; 76(10):1207-1214. PubMed ID: 31300840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.
    Goordial J; Raymond-Bouchard I; Zolotarov Y; de Bethencourt L; Ronholm J; Shapiro N; Woyke T; Stromvik M; Greer CW; Bakermans C; Whyte L
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26637477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical Optimisation of Phenol Degradation and Pathway Identification through Whole Genome Sequencing of the Cold-Adapted Antarctic Bacterium,
    Lee GLY; Zakaria NN; Convey P; Futamata H; Zulkharnain A; Suzuki K; Abdul Khalil K; Shaharuddin NA; Alias SA; González-Rocha G; Ahmad SA
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33316871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica.
    Silva LJ; Souza DT; Genuario DB; Hoyos HAV; Santos SN; Rosa LH; Zucchi TD; Melo IS
    Antonie Van Leeuwenhoek; 2018 Apr; 111(4):629-636. PubMed ID: 29143212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Based Insights into the Production of Carotenoids by Antarctic Bacteria,
    Styczynski M; Rogowska A; Gieczewska K; Garstka M; Szakiel A; Dziewit L
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32977394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-genome sequencing and functional analysis of a novel chitin-degrading strain Rhodococcus sp. 11-3.
    Xiao Y; Lu H; Liu Y; Sang Y; Sun J
    J Biosci Bioeng; 2022 Aug; 134(2):167-173. PubMed ID: 35644796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CAZyme-Rich Genome of a Taxonomically Novel Rhodophyte-Associated Carrageenolytic Marine Bacterium.
    Boncan DAT; David AME; Lluisma AO
    Mar Biotechnol (NY); 2018 Dec; 20(6):685-705. PubMed ID: 29936557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The complete genome sequence of the nitrile biocatalyst Rhodocccus rhodochrous ATCC BAA-870.
    Frederick J; Hennessy F; Horn U; de la Torre Cortés P; van den Broek M; Strych U; Willson R; Hefer CA; Daran JG; Sewell T; Otten LG; Brady D
    BMC Genomics; 2020 Jan; 21(1):3. PubMed ID: 31898479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci.
    Creason AL; Vandeputte OM; Savory EA; Davis EW; Putnam ML; Hu E; Swader-Hines D; Mol A; Baucher M; Prinsen E; Zdanowska M; Givan SA; El Jaziri M; Loper JE; Mahmud T; Chang JH
    PLoS One; 2014; 9(7):e101996. PubMed ID: 25010934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation.
    Han SR; Kim B; Jang JH; Park H; Oh TJ
    BMC Genomics; 2021 Jun; 22(1):403. PubMed ID: 34078272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus.
    Zampolli J; Zeaiter Z; Di Canito A; Di Gennaro P
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1069-1080. PubMed ID: 30554387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.