These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33459995)

  • 1. A predictive model for cortical bone temperature distribution during drilling.
    Hu Y; Ding H; Shi Y; Zhang H; Zheng Q
    Phys Eng Sci Med; 2021 Mar; 44(1):147-156. PubMed ID: 33459995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling.
    Aydın K; Ökten K; Uğur L
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.
    Alam K
    Biomed Mater Eng; 2016 May; 27(1):39-48. PubMed ID: 27175466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction thermal damage to cortical bone using ultrasonically-assisted drilling.
    Zheng Q; Xia L; Zhang X; Zhang C; Hu Y
    Technol Health Care; 2018; 26(5):843-856. PubMed ID: 30103355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation.
    Kabiri A; Talaee MR
    Proc Inst Mech Eng H; 2022 Jun; 236(6):811-824. PubMed ID: 35486132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters.
    Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK
    Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric effect of vibrational drilling on osteonecrosis and comparative histopathology study with conventional drilling of cortical bone.
    Singh G; Jain V; Gupta D; Sharma A
    Proc Inst Mech Eng H; 2018 Oct; 232(10):975-986. PubMed ID: 30112958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on biological damage in bone in vibrational drilling.
    Alam K; Iqbal M; Umer J; Amjad M; Al-Ghaithi A
    Biomed Mater Eng; 2020; 31(5):269-277. PubMed ID: 32986649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies.
    Bai X; Hou S; Li K; Qu Y; Zhu W
    Med Eng Phys; 2020 Sep; 83():73-81. PubMed ID: 32807351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of process parameters on the temperature changes during robotic bone drilling.
    Han Y; Cai C; Lv Q; Song Y; Zhang Q
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1129-1138. PubMed ID: 35821641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study of Thrust Force and Torque for Drilling Cortical Bone.
    Sui J; Sugita N
    Ann Biomed Eng; 2019 Mar; 47(3):802-812. PubMed ID: 30627838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report.
    Augustin G; Davila S; Udiljak T; Vedrina DS; Bagatin D
    Arch Orthop Trauma Surg; 2009 May; 129(5):703-9. PubMed ID: 18421465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical and experimental study of effective parameters on process temperature during cortical bone drilling.
    Heydari H; Cheraghi Kazerooni N; Zolfaghari M; Ghoreishi M; Tahmasbi V
    Proc Inst Mech Eng H; 2018 Sep; 232(9):871-883. PubMed ID: 30160611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of temperature induced in bone during drilling in minimally invasive foot surgery.
    Omar NA; McKinley JC
    Foot (Edinb); 2018 Jun; 35():63-69. PubMed ID: 29807300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro comparison of cortical bone temperature generation between traditional sequential drilling and a newly designed step drill in the equine third metacarpal bone.
    Bubeck KA; García-López J; Maranda LS
    Vet Comp Orthop Traumatol; 2009; 22(6):442-7. PubMed ID: 19876527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.
    Tahmasbi V; Ghoreishi M; Zolfaghari M
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1012-1024. PubMed ID: 28803514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill.
    Augustin G; Davila S; Udilljak T; Staroveski T; Brezak D; Babic S
    Int Orthop; 2012 Jul; 36(7):1449-56. PubMed ID: 22290154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
    Shakouri E; Sadeghi MH; Maerefat M; Shajari S
    Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of bone drilling by Kirschner wire.
    Song S; Cheng X; Li T; Shi M; Zheng G; Liu H
    Med Eng Phys; 2022 Aug; 106():103835. PubMed ID: 35926958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.