These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 33460117)

  • 21. Arrest of stomatal initials in Tradescantia is linked to the proximity of neighboring stomata and results in the arrested initials acquiring properties of epidermal cells.
    Boetsch J; Chin J; Croxdale J
    Dev Biol; 1995 Mar; 168(1):28-38. PubMed ID: 7883076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential role of ethylene and hydrogen peroxide in dark-induced stomatal closure.
    Kar RK; Parvin N; Laha D
    Pak J Biol Sci; 2013 Dec; 16(24):1991-6. PubMed ID: 24517017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sucrose-to-malate ratio correlates with the faster CO
    Lima VF; Anjos LD; Medeiros DB; Cândido-Sobrinho SA; Souza LP; Gago J; Fernie AR; Daloso DM
    New Phytol; 2019 Sep; 223(4):1873-1887. PubMed ID: 31099898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses.
    Taylor SH; Franks PJ; Hulme SP; Spriggs E; Christin PA; Edwards EJ; Woodward FI; Osborne CP
    New Phytol; 2012 Jan; 193(2):387-96. PubMed ID: 22040513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Balcerowicz M; Ranjan A; Rupprecht L; Fiene G; Hoecker U
    Development; 2014 Aug; 141(16):3165-76. PubMed ID: 25063454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fern Stomatal Responses to ABA and CO
    Hõrak H; Kollist H; Merilo E
    Plant Physiol; 2017 Jun; 174(2):672-679. PubMed ID: 28351911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species.
    Kardiman R; Ræbild A
    Tree Physiol; 2018 May; 38(5):696-705. PubMed ID: 29186586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The blue light-specific response of Vicia faba stomata acclimates to growth environment.
    Frechilla S; Talbott LD; Zeiger E
    Plant Cell Physiol; 2004 Nov; 45(11):1709-14. PubMed ID: 15574847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?
    Pompelli MF; Martins SC; Celin EF; Ventrella MC; Damatta FM
    Braz J Biol; 2010 Nov; 70(4):1083-8. PubMed ID: 21180918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis.
    Prats E; Gay AP; Mur LA; Thomas BJ; Carver TL
    J Exp Bot; 2006; 57(10):2211-26. PubMed ID: 16793847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of individual stomata in Ipomoea pes-caprae to various CO2 concentrations.
    Kamakura M; Furukawa A
    Physiol Plant; 2008 Mar; 132(3):255-61. PubMed ID: 18283728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth.
    Resco de Dios V; Loik ME; Smith R; Aspinwall MJ; Tissue DT
    Plant Cell Environ; 2016 Jan; 39(1):3-11. PubMed ID: 26147129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity.
    Nejad AR; van Meeteren U
    J Exp Bot; 2007; 58(3):627-36. PubMed ID: 17175553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The remarkable stomata of horsetails (Equisetum): patterning, ultrastructure and development.
    Cullen E; Rudall PJ
    Ann Bot; 2016 Aug; 118(2):207-18. PubMed ID: 27268485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.
    James SA; Bell DT
    Tree Physiol; 2000 Sep; 20(15):1007-18. PubMed ID: 11305455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana.
    Rezaei Nejad A; van Meeteren U
    J Exp Bot; 2008; 59(2):289-301. PubMed ID: 18238802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata.
    von Caemmerer S; Griffiths H
    Plant Cell Environ; 2009 May; 32(5):567-76. PubMed ID: 19210641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest.
    Ichie T; Inoue Y; Takahashi N; Kamiya K; Kenzo T
    J Plant Res; 2016 Jul; 129(4):625-635. PubMed ID: 26879931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The HT1 protein kinase is essential for red light-induced stomatal opening and genetically interacts with OST1 in red light and CO2 -induced stomatal movement responses.
    Matrosova A; Bogireddi H; Mateo-Peñas A; Hashimoto-Sugimoto M; Iba K; Schroeder JI; Israelsson-Nordström M
    New Phytol; 2015 Dec; 208(4):1126-37. PubMed ID: 26192339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.