These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33460675)

  • 1. Effect of daily human movement on some characteristics of dengue dynamics.
    Tocto-Erazo MR; Olmos-Liceaga D; Montoya-Laos JA
    Math Biosci; 2021 Feb; 332():108531. PubMed ID: 33460675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China.
    Zou L; Chen J; Feng X; Ruan S
    Bull Math Biol; 2018 Oct; 80(10):2633-2651. PubMed ID: 30083966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population.
    Nipa KF; Jang SR; Allen LJS
    Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
    Lee S; Castillo-Chavez C
    J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia.
    Barrios E; Lee S; Vasilieva O
    J Theor Biol; 2018 Sep; 453():14-39. PubMed ID: 29775680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spatial simulation model for dengue virus infection in urban areas.
    Karl S; Halder N; Kelso JK; Ritchie SA; Milne GJ
    BMC Infect Dis; 2014 Aug; 14():447. PubMed ID: 25139524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold Dynamics of a Temperature-Dependent Stage-Structured Mosquito Population Model with Nested Delays.
    Wang X; Zou X
    Bull Math Biol; 2018 Jul; 80(7):1962-1987. PubMed ID: 29785519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implication of sexual transmission of Zika on dengue and Zika outbreaks.
    Tang B; Zhou WK; Xiao YN; Wu JH
    Math Biosci Eng; 2019 Jun; 16(5):5092-5113. PubMed ID: 31499705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating dengue type reproduction numbers for two provinces of Sri Lanka during the period 2013-14.
    Sardar T; Sasmal SK; Chattopadhyay J
    Virulence; 2016; 7(2):187-200. PubMed ID: 26646355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effect of temperature on dengue virus transmission with periodic delay differential equations.
    Song HT; Tian D; Shan CH
    Math Biosci Eng; 2020 Jun; 17(4):4147-4164. PubMed ID: 32987573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China.
    Musa SS; Zhao S; Chan HS; Jin Z; He DH
    Math Biosci Eng; 2019 Apr; 16(5):3841-3863. PubMed ID: 31499639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive exclusion in a vector-host model for the dengue fever.
    Feng Z; Velasco-Hernández JX
    J Math Biol; 1997 May; 35(5):523-44. PubMed ID: 9145954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased efficiency in the second-hand tire trade provides opportunity for dengue control.
    Pliego Pliego E; Velázquez-Castro J; Eichhorn MP; Fraguela Collar A
    J Theor Biol; 2018 Jan; 437():126-136. PubMed ID: 29079324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Heterogeneity of Dengue Transmission in a City.
    Kong L; Wang J; Li Z; Lai S; Liu Q; Wu H; Yang W
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29857503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model.
    Adams B; Boots M
    Epidemics; 2010 Mar; 2(1):1-10. PubMed ID: 21352772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of human movement in the transmission of vector-borne pathogens.
    Stoddard ST; Morrison AC; Vazquez-Prokopec GM; Paz Soldan V; Kochel TJ; Kitron U; Elder JP; Scott TW
    PLoS Negl Trop Dis; 2009 Jul; 3(7):e481. PubMed ID: 19621090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal control strategies for dengue transmission in pakistan.
    Agusto FB; Khan MA
    Math Biosci; 2018 Nov; 305():102-121. PubMed ID: 30218686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.