BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33460960)

  • 21. Aroma release in the oral cavity after wine intake is influenced by wine matrix composition.
    Esteban-Fernández A; Muñoz-González C; Jiménez-Girón A; Pérez-Jiménez M; Pozo-Bayón MÁ
    Food Chem; 2018 Mar; 243():125-133. PubMed ID: 29146318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines.
    Petronilho S; Lopez R; Ferreira V; Coimbra MA; Rocha SM
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does interindividual variability of saliva affect the release and metabolization of aroma compounds ex vivo? The particular case of elderly suffering or not from hyposalivation.
    Muñoz-González C; Brulé M; Feron G; Canon F
    J Texture Stud; 2019 Feb; 50(1):36-44. PubMed ID: 30520036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Volatile Compounds Related to 'Stone Fruit' Aroma Attributes in Viognier and Chardonnay Wines.
    Siebert TE; Barker A; Pearson W; Barter SR; de Barros Lopes MA; Darriet P; Herderich MJ; Francis IL
    J Agric Food Chem; 2018 Mar; 66(11):2838-2850. PubMed ID: 29485286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Volatile aroma compounds in wines from Chinese wild/hybrid species.
    Wei Z; Liu X; Huang Y; Lu J; Zhang Y
    J Food Biochem; 2019 Oct; 43(10):e12684. PubMed ID: 31608471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of odor-active compounds in guava wine.
    Pino JA; Queris O
    J Agric Food Chem; 2011 May; 59(9):4885-90. PubMed ID: 21417409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Ethanol Concentration on Oral Aroma Release After Wine Consumption.
    Muñoz-González C; Pérez-Jiménez M; Criado C; Pozo-Bayón MÁ
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modified proton transfer reaction mass spectrometry (PTR-MS) operating conditions for in vitro and in vivo analysis of wine aroma.
    Sémon E; Arvisenet G; Guichard E; Le Quéré JL
    J Mass Spectrom; 2018 Jan; 53(1):65-77. PubMed ID: 28981178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: wine reconstitution strategies and sensory sorting task.
    Sáenz-Navajas MP; Campo E; Avizcuri JM; Valentin D; Fernández-Zurbano P; Ferreira V
    Anal Chim Acta; 2012 Jun; 732():64-72. PubMed ID: 22688035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an in-mouth headspace sorptive extraction method (HSSE) for oral aroma monitoring and application to wines of different chemical composition.
    Pérez-Jiménez M; Pozo-Bayón MÁ
    Food Res Int; 2019 Jul; 121():97-107. PubMed ID: 31108831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An automated gas chromatographic-mass spectrometric method for the quantitative analysis of the odor-active molecules present in the vapors emanated from wine.
    Wen Y; Lopez R; Ferreira V
    J Chromatogr A; 2018 Jan; 1534():130-138. PubMed ID: 29306634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulating the formation of Meili wine aroma by prefermentative freezing process.
    Peng CT; Wen Y; Tao YS; Lan YY
    J Agric Food Chem; 2013 Feb; 61(7):1542-53. PubMed ID: 23330536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure.
    Esteban-Fernández A; Rocha-Alcubilla N; Muñoz-González C; Moreno-Arribas MV; Pozo-Bayón MÁ
    Food Chem; 2016 Aug; 205():280-8. PubMed ID: 27006241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine.
    Ruiz J; Kiene F; Belda I; Fracassetti D; Marquina D; Navascués E; Calderón F; Benito A; Rauhut D; Santos A; Benito S
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7425-7450. PubMed ID: 31377872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the Key Aroma Compounds in Marselan Wine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests.
    Lyu J; Ma Y; Xu Y; Nie Y; Tang K
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.
    Gürbüz O; Rouseff J; Talcott ST; Rouseff R
    J Agric Food Chem; 2013 Jan; 61(3):532-9. PubMed ID: 23289372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analytical characterisation of Negroamaro red wines by "Aroma Wheels".
    Capone S; Tufariello M; Siciliano P
    Food Chem; 2013 Dec; 141(3):2906-15. PubMed ID: 23871040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Objective measures of greengage wine quality: From taste-active compound and aroma-active compound to sensory profiles.
    Tian T; Sun J; Wu D; Xiao J; Lu J
    Food Chem; 2021 Mar; 340():128179. PubMed ID: 33007693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the key odorants contributing to retronasal olfaction during bread consumption.
    Pu D; Duan W; Huang Y; Zhang Y; Sun B; Ren F; Zhang H; Chen H; He J; Tang Y
    Food Chem; 2020 Jul; 318():126520. PubMed ID: 32155563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake and Release of Aroma Compounds by an Ethylene Propylene Diene Monomer Rubber Sealing Polymer: Investigating Aroma Carryover in a Model Wine System.
    Gottmann J; Vestner J; Müller D; Schuster J; Fischer U
    J Agric Food Chem; 2021 Sep; 69(38):11382-11394. PubMed ID: 34533305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.