These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33461020)

  • 1. Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor.
    Kato S; Onoda A; Grimm AR; Schwaneberg U; Hayashi T
    J Inorg Biochem; 2021 Mar; 216():111352. PubMed ID: 33461020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp
    Kato S; Onoda A; Grimm AR; Tachikawa K; Schwaneberg U; Hayashi T
    Inorg Chem; 2020 Oct; 59(19):14457-14463. PubMed ID: 32914980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of a Cp*Rh
    Kato S; Onoda A; Taniguchi N; Schwaneberg U; Hayashi T
    Chembiochem; 2021 Feb; 22(4):679-685. PubMed ID: 33026156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for C-H Functionalization.
    Piou T; Rovis T
    Acc Chem Res; 2018 Jan; 51(1):170-180. PubMed ID: 29272106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold.
    Kato S; Onoda A; Schwaneberg U; Hayashi T
    J Am Chem Soc; 2023 Mar; 145(15):8285-90. PubMed ID: 36892401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorido(dimethyl 2,2'-bipyridine-4,4'-dicarboxylate-κ2N,N')(η5-pentamethylcyclopentadienyl)rhodium(III) chloride 1-hydroxypyrrolidine-2,5-dione disolvate.
    Sivanesan D; Kim HM; Sungho Y
    Acta Crystallogr C; 2013 Jun; 69(Pt 6):584-7. PubMed ID: 23744372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C(sp3)-C(sp3) and C(sp3)-H bond activation of 1,1-disubstituted cyclopentane.
    Mukai C; Ohta Y; Oura Y; Kawaguchi Y; Inagaki F
    J Am Chem Soc; 2012 Dec; 134(48):19580-3. PubMed ID: 23146104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, molecular structure, computational study and in vitro anticancer activity of dinuclear thiolato-bridged pentamethylcyclopentadienyl Rh(III) and Ir(III) complexes.
    Gupta G; Garci A; Murray BS; Dyson PJ; Fabre G; Trouillas P; Giannini F; Furrer J; Süss-Fink G; Therrien B
    Dalton Trans; 2013 Nov; 42(43):15457-63. PubMed ID: 24022745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antitumor pentamethylcyclopentadienyl rhodium complexes of maltol and allomaltol: synthesis, solution speciation and bioactivity.
    Dömötör O; Aicher S; Schmidlehner M; Novak MS; Roller A; Jakupec MA; Kandioller W; Hartinger CG; Keppler BK; Enyedy ÉA
    J Inorg Biochem; 2014 May; 134():57-65. PubMed ID: 24556426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between the Structure and Catalytic Activity of [Cp*Rh(Substituted Bipyridine)] Complexes for NADH Regeneration.
    Ganesan V; Sivanesan D; Yoon S
    Inorg Chem; 2017 Feb; 56(3):1366-1374. PubMed ID: 28072529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.
    Soldevila-Barreda JJ; Habtemariam A; Romero-Canelón I; Sadler PJ
    J Inorg Biochem; 2015 Dec; 153():322-333. PubMed ID: 26601938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of the selectivity for borylation of primary over secondary C-H bonds catalyzed by Cp*-rhodium complexes.
    Wei CS; Jiménez-Hoyos CA; Videa MF; Hartwig JF; Hall MB
    J Am Chem Soc; 2010 Mar; 132(9):3078-91. PubMed ID: 20121104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide-tethered monodentate and chelating histidylidene metal complexes: synthesis and application in catalytic hydrosilylation.
    Monney A; Nastri F; Albrecht M
    Dalton Trans; 2013 Apr; 42(16):5655-60. PubMed ID: 23440059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C-H Activation Reactions: An Experimental and Computational Study.
    Piou T; Romanov-Michailidis F; Romanova-Michaelides M; Jackson KE; Semakul N; Taggart TD; Newell BS; Rithner CD; Paton RS; Rovis T
    J Am Chem Soc; 2017 Jan; 139(3):1296-1310. PubMed ID: 28060499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodium dinaphthocyclooctatetraene complexes: synthesis, characterization and catalytic activity in [5+2] cycloadditions.
    Wender PA; Lesser AB; Sirois LE
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2736-40. PubMed ID: 22298411
    [TBL] [