These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33461266)
1. Modelling and analyzing spatial clusters of leptospirosis based on satellite-generated measurements of environmental factors in Thailand during 2013-2015. Luenam A; Puttanapong N Geospat Health; 2020 Nov; 15(2):. PubMed ID: 33461266 [TBL] [Abstract][Full Text] [Related]
2. Climate variability, satellite-derived physical environmental data and human leptospirosis: A retrospective ecological study in China. Dhewantara PW; Hu W; Zhang W; Yin WW; Ding F; Mamun AA; Soares Magalhães RJ Environ Res; 2019 Sep; 176():108523. PubMed ID: 31203048 [TBL] [Abstract][Full Text] [Related]
3. A remotely sensed flooding indicator associated with cattle and buffalo leptospirosis cases in Thailand 2011-2013. Chadsuthi S; Chalvet-Monfray K; Wiratsudakul A; Suwancharoen D; Cappelle J BMC Infect Dis; 2018 Nov; 18(1):602. PubMed ID: 30497412 [TBL] [Abstract][Full Text] [Related]
4. Spatial-temporal patterns and risk factors for human leptospirosis in Thailand, 2012-2018. Chadsuthi S; Chalvet-Monfray K; Geawduanglek S; Wongnak P; Cappelle J Sci Rep; 2022 Mar; 12(1):5066. PubMed ID: 35332199 [TBL] [Abstract][Full Text] [Related]
5. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
6. Spatial and statistical analysis of leptospirosis in Thailand from 2013 to 2015. Luenam A; Puttanapong N Geospat Health; 2019 May; 14(1):. PubMed ID: 31099522 [TBL] [Abstract][Full Text] [Related]
7. Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data. Dlamini SN; Franke J; Vounatsou P Geospat Health; 2015 Jun; 10(1):302. PubMed ID: 26054511 [TBL] [Abstract][Full Text] [Related]
8. Predicting malaria cases using remotely sensed environmental variables in Nkomazi, South Africa. Adeola AM; Botai JO; Mukarugwiza Olwoch J; De W Rautenbach HCJ; Adisa OM; De Jager C; Botai CM; Aaron M Geospat Health; 2019 May; 14(1):. PubMed ID: 31099518 [TBL] [Abstract][Full Text] [Related]
9. Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time-series and ARIMAX analyses. Chadsuthi S; Modchang C; Lenbury Y; Iamsirithaworn S; Triampo W Asian Pac J Trop Med; 2012 Jul; 5(7):539-46. PubMed ID: 22647816 [TBL] [Abstract][Full Text] [Related]
10. The use of remotely sensed environmental parameters for spatial and temporal schistosomiasis prediction across climate zones in Ghana. Wrable M; Kulinkina AV; Liss A; Koch M; Cruz MS; Biritwum NK; Ofosu A; Gute DM; Kosinski KC; Naumova EN Environ Monit Assess; 2019 Jun; 191(Suppl 2):301. PubMed ID: 31254149 [TBL] [Abstract][Full Text] [Related]
11. Spatial distribution of leptospirosis incidence in the Upper Yangtze and Pearl River Basin, China: Tools to support intervention and elimination. Dhewantara PW; Zhang W; Al Mamun A; Yin WW; Ding F; Guo D; Hu W; Soares Magalhães RJ Sci Total Environ; 2020 Jul; 725():138251. PubMed ID: 32298905 [TBL] [Abstract][Full Text] [Related]
12. Environmental risk of leptospirosis infections in the Netherlands: Spatial modelling of environmental risk factors of leptospirosis in the Netherlands. Rood EJJ; Goris MGA; Pijnacker R; Bakker MI; Hartskeerl RA PLoS One; 2017; 12(10):e0186987. PubMed ID: 29065186 [TBL] [Abstract][Full Text] [Related]
13. Unraveling the invisible leptospirosis in mainland Southeast Asia and its fate under climate change. Douchet L; Goarant C; Mangeas M; Menkes C; Hinjoy S; Herbreteau V Sci Total Environ; 2022 Aug; 832():155018. PubMed ID: 35390383 [TBL] [Abstract][Full Text] [Related]
14. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Nakhapakorn K; Tripathi NK Int J Health Geogr; 2005 Jun; 4():13. PubMed ID: 15943863 [TBL] [Abstract][Full Text] [Related]
15. Potential association of dengue hemorrhagic fever incidence and remote senses land surface temperature, Thailand, 1998. Nitatpattana N; Singhasivanon P; Kiyoshi H; Andrianasolo H; Yoksan S; Gonzalez JP; Barbazan P Southeast Asian J Trop Med Public Health; 2007 May; 38(3):427-33. PubMed ID: 17877215 [TBL] [Abstract][Full Text] [Related]
16. Exploring the Relationship between Melioidosis Morbidity Rate and Local Environmental Indicators Using Remotely Sensed Data. Wongbutdee J; Jittimanee J; Daendee S; Thongsang P; Saengnill W Int J Environ Res Public Health; 2024 May; 21(5):. PubMed ID: 38791828 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal patterns of leptospirosis in Thailand: is flooding a risk factor? Suwanpakdee S; Kaewkungwal J; White LJ; Asensio N; Ratanakorn P; Singhasivanon P; Day NP; Pan-Ngum W Epidemiol Infect; 2015 Jul; 143(10):2106-15. PubMed ID: 25778527 [TBL] [Abstract][Full Text] [Related]
18. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study. Nygren D; Stoyanov C; Lewold C; Månsson F; Miller J; Kamanga A; Shiff CJ Malar J; 2014 Jun; 13():231. PubMed ID: 24927747 [TBL] [Abstract][Full Text] [Related]
19. Using a coupled dynamic factor - random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa. Southworth J; Bunting E; Zhu L; Ryan SJ; Herrero HV; Waylen P; Muñoz-Carpena R; Campo-Bescós MA; Kaplan D PLoS One; 2018; 13(12):e0208400. PubMed ID: 30550542 [TBL] [Abstract][Full Text] [Related]
20. Spatial association between COVID-19 incidence rate and nighttime light index. Luenam A; Puttanapong N Geospat Health; 2022 Mar; 17(s1):. PubMed ID: 35735945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]