These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33461290)

  • 1. 96-Well Oxygen Control Using a 3D-Printed Device.
    Szmelter A; Jacob J; Eddington DT
    Anal Chem; 2021 Feb; 93(4):2570-2577. PubMed ID: 33461290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D-Printed Oxygen Control Insert for a 24-Well Plate.
    Brennan MD; Rexius-Hall ML; Eddington DT
    PLoS One; 2015; 10(9):e0137631. PubMed ID: 26360882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upgrading well plates using open microfluidic patterning.
    Berry SB; Zhang T; Day JH; Su X; Wilson IZ; Berthier E; Theberge AB
    Lab Chip; 2017 Dec; 17(24):4253-4264. PubMed ID: 29164190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic cell culture array with various oxygen tensions.
    Peng CC; Liao WH; Chen YH; Wu CY; Tung YC
    Lab Chip; 2013 Aug; 13(16):3239-45. PubMed ID: 23784347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment.
    Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD
    Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
    Chen YA; King AD; Shih HC; Peng CC; Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 Nov; 11(21):3626-33. PubMed ID: 21915399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixing and delivery of multiple controlled oxygen environments to a single multiwell culture plate.
    Yao M; Sattler T; Rabbani ZN; Pulliam T; Walker G; Gamcsik MP
    Am J Physiol Cell Physiol; 2018 Nov; 315(5):C766-C775. PubMed ID: 30183322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments.
    Mao M; He J; Lu Y; Li X; Li T; Zhou W; Li D
    Biofabrication; 2018 Feb; 10(2):025008. PubMed ID: 29350200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules.
    Lockwood SY; Meisel JE; Monsma FJ; Spence DM
    Anal Chem; 2016 Feb; 88(3):1864-70. PubMed ID: 26727249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips.
    Loessberg-Zahl J; van der Meer AD; van den Berg A; Eijkel JCT
    Lab Chip; 2019 Jan; 19(2):206-213. PubMed ID: 30548051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt.
    Gelber MK; Bhargava R
    Lab Chip; 2015 Apr; 15(7):1736-41. PubMed ID: 25671493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment.
    Wang L; Liu W; Wang Y; Wang JC; Tu Q; Liu R; Wang J
    Lab Chip; 2013 Feb; 13(4):695-705. PubMed ID: 23254684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing a Microfluidic Device with Integrated Ratiometric Oxygen Sensors for the Long-Term Control and Monitoring of Chronic and Cyclic Hypoxia.
    Grist SM; Schmok JC; Liu MC; Chrostowski L; Cheung KC
    Sensors (Basel); 2015 Aug; 15(8):20030-52. PubMed ID: 26287202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Actuation via 3D-Printed Molds toward Multiplex Biosensing of Cell Apoptosis.
    Dang BV; Hassanzadeh-Barforoushi A; Syed MS; Yang D; Kim SJ; Taylor RA; Liu GJ; Liu G; Barber T
    ACS Sens; 2019 Aug; 4(8):2181-2189. PubMed ID: 31321976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.