These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 33461448)

  • 1. NAD Precursors, Mitochondria Targeting Compounds and ADP-Ribosylation Inhibitors in Treatment of Inflammatory Diseases and Cancer.
    Poltronieri P; Mezzolla V; Farooqi AA; Di Girolamo M
    Curr Med Chem; 2021; 28(41):8453-8479. PubMed ID: 33461448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mono(ADP-ribosyl)ation Enzymes and NAD
    Poltronieri P; Celetti A; Palazzo L
    Cells; 2021 Jan; 10(1):. PubMed ID: 33440786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD+ and sirtuins in aging and disease.
    Imai S; Guarente L
    Trends Cell Biol; 2014 Aug; 24(8):464-71. PubMed ID: 24786309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic regulation of NAD metabolism in mitochondria.
    Stein LR; Imai S
    Trends Endocrinol Metab; 2012 Sep; 23(9):420-8. PubMed ID: 22819213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of NAD
    Kang BE; Choi JY; Stein S; Ryu D
    Eur J Clin Invest; 2020 Oct; 50(10):e13334. PubMed ID: 32594513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity.
    Ugamraj HS; Dang K; Ouisse LH; Buelow B; Chini EN; Castello G; Allison J; Clarke SC; Davison LM; Buelow R; Deng R; Iyer S; Schellenberger U; Manika SN; Bijpuria S; Musnier A; Poupon A; Cuturi MC; van Schooten W; Dalvi P
    MAbs; 2022; 14(1):2095949. PubMed ID: 35867844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD and ADP-ribose metabolism in mitochondria.
    Dölle C; Rack JG; Ziegler M
    FEBS J; 2013 Aug; 280(15):3530-41. PubMed ID: 23617329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in the function and regulation of ADP-Ribosylation.
    Hottiger MO; Boothby M; Koch-Nolte F; Lüscher B; Martin NM; Plummer R; Wang ZQ; Ziegler M
    Sci Signal; 2011 May; 4(174):mr5. PubMed ID: 21610250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinamide Adenine Dinucleotide Metabolism and Neurodegeneration.
    Pehar M; Harlan BA; Killoy KM; Vargas MR
    Antioxid Redox Signal; 2018 Jun; 28(18):1652-1668. PubMed ID: 28548540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+ metabolism in health and disease.
    Belenky P; Bogan KL; Brenner C
    Trends Biochem Sci; 2007 Jan; 32(1):12-9. PubMed ID: 17161604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target.
    Griffiths HBS; Williams C; King SJ; Allison SJ
    Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders.
    Srivastava S
    Clin Transl Med; 2016 Dec; 5(1):25. PubMed ID: 27465020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory Effects of NAD
    Zhang N; Sauve AA
    Prog Mol Biol Transl Sci; 2018; 154():71-104. PubMed ID: 29413178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new facet of ADP-ribosylation reactions: SIRTs and PARPs interplay.
    Faraone-Mennella MR
    Front Biosci (Landmark Ed); 2015 Jan; 20(3):458-73. PubMed ID: 25553461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD
    Xu J; Kitada M; Koya D
    Front Med (Lausanne); 2021; 8():703076. PubMed ID: 34368195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes.
    Braidy N; Berg J; Clement J; Khorshidi F; Poljak A; Jayasena T; Grant R; Sachdev P
    Antioxid Redox Signal; 2019 Jan; 30(2):251-294. PubMed ID: 29634344
    [No Abstract]   [Full Text] [Related]  

  • 18. PGC-1α, Sirtuins and PARPs in Huntington's Disease and Other Neurodegenerative Conditions: NAD+ to Rule Them All.
    Lloret A; Beal MF
    Neurochem Res; 2019 Oct; 44(10):2423-2434. PubMed ID: 31065944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases.
    Tannous C; Booz GW; Altara R; Muhieddine DH; Mericskay M; Refaat MM; Zouein FA
    Acta Physiol (Oxf); 2021 Mar; 231(3):e13551. PubMed ID: 32853469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensor reveals multiple sources for mitochondrial NAD⁺.
    Cambronne XA; Stewart ML; Kim D; Jones-Brunette AM; Morgan RK; Farrens DL; Cohen MS; Goodman RH
    Science; 2016 Jun; 352(6292):1474-7. PubMed ID: 27313049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.