BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 33461552)

  • 1. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration.
    Piovani L; Czarkwiani A; Ferrario C; Sugni M; Oliveri P
    BMC Biol; 2021 Jan; 19(1):9. PubMed ID: 33461552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis.
    Czarkwiani A; Dylus DV; Oliveri P
    Gene Expr Patterns; 2013 Dec; 13(8):464-72. PubMed ID: 24051028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal regeneration in the brittle star Amphiura filiformis.
    Czarkwiani A; Ferrario C; Dylus DV; Sugni M; Oliveri P
    Front Zool; 2016; 13():18. PubMed ID: 27110269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staging of regeneration process of an arm of the feather star Oxycomanthus japonicus focusing on the oral-aboral boundary.
    Shibata TF; Oji T; Akasaka K; Agata K
    Dev Dyn; 2010 Nov; 239(11):2947-61. PubMed ID: 20865783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis.
    Bannister R; McGonnell IM; Graham A; Thorndyke MC; Beesley PW
    Dev Genes Evol; 2008 Jan; 218(1):33-8. PubMed ID: 18060425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental aspects of arm repair phase in two echinoderm models.
    Ferrario C; Ben Khadra Y; Czarkwiani A; Zakrzewski A; Martinez P; Colombo G; Bonasoro F; Candia Carnevali MD; Oliveri P; Sugni M
    Dev Biol; 2018 Jan; 433(2):297-309. PubMed ID: 29291979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular matrix gene expression during arm regeneration in Amphiura filiformis.
    Ferrario C; Czarkwiani A; Dylus DV; Piovani L; Candia Carnevali MD; Sugni M; Oliveri P
    Cell Tissue Res; 2020 Sep; 381(3):411-426. PubMed ID: 32350640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF signalling plays similar roles in development and regeneration of the skeleton in the brittle star Amphiura filiformis.
    Czarkwiani A; Dylus DV; Carballo L; Oliveri P
    Development; 2021 May; 148(10):. PubMed ID: 34042967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks.
    Dylus DV; Czarkwiani A; StÄngberg J; Ortega-Martinez O; Dupont S; Oliveri P
    Evodevo; 2016; 7():2. PubMed ID: 26759711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.
    Koga H; Fujitani H; Morino Y; Miyamoto N; Tsuchimoto J; Shibata TF; Nozawa M; Shigenobu S; Ogura A; Tachibana K; Kiyomoto M; Amemiya S; Wada H
    PLoS One; 2016; 11(2):e0149067. PubMed ID: 26866800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Notch signaling is required for arm regeneration in a brittle star.
    Mashanov V; Akiona J; Khoury M; Ferrier J; Reid R; Machado DJ; Zueva O; Janies D
    PLoS One; 2020; 15(5):e0232981. PubMed ID: 32396580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms.
    Flores RL; Livingston BT
    BMC Evol Biol; 2017 Jun; 17(1):125. PubMed ID: 28583083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa.
    Cary GA; Wolff A; Zueva O; Pattinato J; Hinman VF
    BMC Biol; 2019 Feb; 17(1):16. PubMed ID: 30795750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echinoderm regeneration: an in vitro approach using the crinoid Antedon mediterranea.
    Di Benedetto C; Parma L; Barbaglio A; Sugni M; Bonasoro F; Carnevali MD
    Cell Tissue Res; 2014 Oct; 358(1):189-201. PubMed ID: 25027051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphogenesis and histogenesis during the arm regeneration in a basket star Astrocladus dofleini (Euryalida, Ophiuroidea, Echinodermata).
    Okanishi M; Kohtsuka H; Miura T
    J Morphol; 2021 Feb; 282(2):205-216. PubMed ID: 33159480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeobox genes expressed during echinoderm arm regeneration.
    Ben Khadra Y; Said K; Thorndyke M; Martinez P
    Biochem Genet; 2014 Apr; 52(3-4):166-80. PubMed ID: 24309817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afuni, a novel transforming growth factor-beta gene is involved in arm regeneration by the brittle star Amphiura filiformis.
    Bannister R; McGonnell IM; Graham A; Thorndyke MC; Beesley PW
    Dev Genes Evol; 2005 Aug; 215(8):393-401. PubMed ID: 16010544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular approach to echinoderm regeneration.
    Thorndyke MC; Chen WC; Beesley PW; Patruno M
    Microsc Res Tech; 2001 Dec; 55(6):474-85. PubMed ID: 11782076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration in crinoids.
    Kondo M; Akasaka K
    Dev Growth Differ; 2010 Jan; 52(1):57-68. PubMed ID: 20078653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.