BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 3346205)

  • 1. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. II. Two modes of post-illumination phosphorylation driven by either delocalized or localized proton gradient coupling.
    Beard WA; Chiang G; Dilley RA
    J Bioenerg Biomembr; 1988 Feb; 20(1):107-28. PubMed ID: 3346205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. I. An assay using luciferin-luciferase luminescence.
    Beard WA; Dilley RA
    J Bioenerg Biomembr; 1988 Feb; 20(1):85-106. PubMed ID: 3346207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. III. Characterization of the ATP formation onset lag and post-illumination phosphorylation for thylakoids exhibiting localized or bulk-phase delocalized energy coupling.
    Beard WA; Dilley RA
    J Bioenerg Biomembr; 1988 Feb; 20(1):129-54. PubMed ID: 3346206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that localized energy coupling in thylakoids can continue beyond the energetic threshold onset into steady illumination.
    Renganathan M; Pan RS; Ewy RG; Theg SM; Allnutt FC; Dilley RA
    Biochim Biophys Acta; 1991 Aug; 1059(1):16-27. PubMed ID: 1651763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between membrane-localized protons and flash-driven ATP formation in chloroplast thylakoids.
    Dilley RA; Schreiber U
    J Bioenerg Biomembr; 1984 Jun; 16(3):173-93. PubMed ID: 6100298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protons in the thylakoid membrane-sequestered domains can directly pass through the coupling factor during ATP synthesis in flashing light.
    Theg SM; Chiang G; Dilley RA
    J Biol Chem; 1988 Jan; 263(2):673-81. PubMed ID: 2891700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that the intrinsic membrane protein LHCII in thylakoids is necessary for maintaining localized delta mu H+ energy coupling.
    Renganathan M; Dilley RA
    J Bioenerg Biomembr; 1994 Feb; 26(1):117-25. PubMed ID: 8027017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperation among electron-transfer complexes in ATP synthesis in chloroplasts.
    Hangarter R; Ort DR
    Eur J Biochem; 1985 Jun; 149(3):503-10. PubMed ID: 2988948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between light-induced increases in the H+ conductivity of thylakoid membranes and activity of the coupling factor.
    Hangarter R; Ort DR
    Eur J Biochem; 1986 Jul; 158(1):7-12. PubMed ID: 2874026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of permeant buffers on the initiation of photosynchronous phosphorylation and postillumination phosphorylation in chloroplasts.
    Horner RD; Moudrianakis EN
    J Biol Chem; 1986 Oct; 261(29):13408-14. PubMed ID: 2875995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium gating of H+ fluxes in chloroplasts affects acid-base-driven ATP formation.
    Wooten DC; Dilley RA
    J Bioenerg Biomembr; 1993 Oct; 25(5):557-67. PubMed ID: 8132495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-dependent interaction of chlorpromazine with the chloroplast 8-kilodalton CF0 protein and calcium gating of H+ fluxes between thylakoid membrane domains and the lumen.
    Chiang GG; Wooten DC; Dilley RA
    Biochemistry; 1992 Jun; 31(25):5808-19. PubMed ID: 1377026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophosphorylation as a function of illumination time. II. Effects of permeant buffers.
    Ort DR; Dilley RA; Good NE
    Biochim Biophys Acta; 1976 Oct; 449(1):108-24. PubMed ID: 10008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The induction kinetics of bacterial photophosphorylation. Threshold effects by the phosphate potential and correlation with the amplitude of the carotenoid absorption band shift.
    Melandri BA; Venturoli G; de Santis A; Baccarini-Melandri A
    Biochim Biophys Acta; 1980 Aug; 592(1):38-52. PubMed ID: 7397138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and hydrolysis of ATP by intact chloroplasts under flash illumination and in darkness.
    Inoue Y; Kobayashi Y; Shibata K; Heber U
    Biochim Biophys Acta; 1978 Oct; 504(1):142-52. PubMed ID: 30476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of permeant buffers on initial ATP synthesis by chloroplasts using rapid mix-quench techniques.
    Horner RD; Moudrianakis EN
    J Biol Chem; 1983 Oct; 258(19):11643-7. PubMed ID: 6619134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protons, the thylakoid membrane, and the chloroplast ATP synthase.
    Junge W
    Ann N Y Acad Sci; 1989; 574():268-86. PubMed ID: 2483874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of chloroplast ATP synthesis activity in Arabidopsis.
    Grennan AK; Ort DR
    Methods Mol Biol; 2011; 775():343-55. PubMed ID: 21863453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores.
    Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY
    Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of high KCl concentrations on membrane-localized metastable proton buffering domains in thylakoids.
    Allnutt FC; Dilley RA; Kelly T
    Photosynth Res; 1989 May; 20(2):161-72. PubMed ID: 24425534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.