These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3346209)

  • 21. Potential role of mitochondrial calcium metabolism during reperfusion injury.
    Vlessis AA; Mela-Riker L
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1196-206. PubMed ID: 2735395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium.
    Zazueta C; Sánchez C; García N; Correa F
    Int J Biochem Cell Biol; 2000 Oct; 32(10):1093-101. PubMed ID: 11091142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. II. Functional alterations of renal cortical mitochondria isolated after mercuric chloride treatment.
    Weinberg JM; Harding PG; Humes HD
    J Biol Chem; 1982 Jan; 257(1):68-74. PubMed ID: 6458619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature dependence of the atractyloside-induced mitochondrial Ca2+ release.
    Chávez E; Osornio A
    Int J Biochem; 1988; 20(7):731-6. PubMed ID: 3181602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of HGCl2 and mersalyl on mechanisms regulating intracellular calcium and transmitter release.
    Binah O; Meiri U; Rahamimoff H
    Eur J Pharmacol; 1978 Oct; 51(4):453-7. PubMed ID: 30640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the inhibitory effects of mercuric chloride on cytosolic and mitochondrial hexokinase activities in rat brain, kidney and spleen.
    Lai JC; Barrow HN
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):81-7. PubMed ID: 6146488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes.
    Levesque PC; Hare MF; Atchison WD
    Toxicol Appl Pharmacol; 1992 Jul; 115(1):11-20. PubMed ID: 1378659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Submitochondrial localization of the NAD+ glycohydrolase. Implications for the role of pyridine nucleotide hydrolysis in mitochondrial calcium fluxes.
    Boyer CS; Moore GA; Moldéus P
    J Biol Chem; 1993 Feb; 268(6):4016-20. PubMed ID: 8382685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercuric ion attenuates nuclear factor-kappaB activation and DNA binding in normal rat kidney epithelial cells: implications for mercury-induced nephrotoxicity.
    Dieguez-Acuña FJ; Ellis ME; Kushleika J; Woods JS
    Toxicol Appl Pharmacol; 2001 Jun; 173(3):176-87. PubMed ID: 11437639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The alpha-adrenergic-mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo.
    Crompton M; Kessar P; Al-Nasser I
    Biochem J; 1983 Nov; 216(2):333-42. PubMed ID: 6661200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanism of lead-induced mitochondrial Ca2+ efflux.
    Chávez E; Jay D; Bravo C
    J Bioenerg Biomembr; 1987 Jun; 19(3):285-95. PubMed ID: 2887557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres.
    Salama G; Abramson JJ; Pike GK
    J Physiol; 1992 Aug; 454():389-420. PubMed ID: 1335505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of cyclosporin A on Hg(2+)-poisoning mitochondria. In vivo and in vitro studies.
    Chávez R; Corona N; García C; Chávez E
    Comp Biochem Physiol Pharmacol Toxicol Endocrinol; 1994 Mar; 107(3):429-34. PubMed ID: 8061950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The permeability transition pore opening in intact mitochondria and submitochondrial particles.
    de Macedo DV; da Costa C; Pereira-Da-Silva L
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Sep; 118(1):209-16. PubMed ID: 9418011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential. Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine.
    van de Water B; Zoeteweij JP; de Bont HJ; Mulder GJ; Nagelkerke JF
    J Biol Chem; 1994 May; 269(20):14546-52. PubMed ID: 8182062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modifications of Ca2+ signaling by inorganic mercury in PC12 cells.
    Rossi AD; Larsson O; Manzo L; Orrenius S; Vahter M; Berggren PO; Nicotera P
    FASEB J; 1993 Dec; 7(15):1507-14. PubMed ID: 8262335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hg2+ signaling in trout hepatoma (RTH-149) cells: involvement of Ca2+-induced Ca2+ release.
    Burlando B; Bonomo M; Fabbri E; Dondero F; Viarengo A
    Cell Calcium; 2003 Sep; 34(3):285-93. PubMed ID: 12887976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulation of porphyrinogen oxidation by mercuric ion. II. Promotion of oxidation from the interaction of mercuric ion, glutathione, and mitochondria-generated hydrogen peroxide.
    Woods JS; Calas CA; Aicher LD
    Mol Pharmacol; 1990 Aug; 38(2):261-6. PubMed ID: 2385233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The stimulation of the release of Ca2+ from mitochondria by sodium ions and its inhibition.
    Harris EJ; Heffron JJ
    Arch Biochem Biophys; 1982 Oct; 218(2):531-9. PubMed ID: 7159098
    [No Abstract]   [Full Text] [Related]  

  • 40. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes.
    Rizzuto R; Pitton G; Azzone GF
    Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.