These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3346224)

  • 1. A kinetic analysis of electron transport across chromaffin vesicle membranes.
    Kelley PM; Njus D
    J Biol Chem; 1988 Mar; 263(8):3799-804. PubMed ID: 3346224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate of electron transfer between cytochrome b561 and extravesicular ascorbic acid.
    Kelley PM; Jalukar V; Njus D
    J Biol Chem; 1990 Nov; 265(32):19409-13. PubMed ID: 2246231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of ascorbic acid with cytochrome b561. Concerted electron and proton transfer.
    Jalukar V; Kelley PM; Njus D
    J Biol Chem; 1991 Apr; 266(11):6878-82. PubMed ID: 1849895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts.
    Kelley PM; Njus D
    J Biol Chem; 1986 May; 261(14):6429-32. PubMed ID: 3700398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome b561 catalyzes transmembrane electron transfer.
    Srivastava M; Duong LT; Fleming PJ
    J Biol Chem; 1984 Jul; 259(13):8072-5. PubMed ID: 6330096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of transmembrane electron transfer in chromaffin-vesicle ghosts.
    Harnadek GJ; Ries EA; Njus D
    Biochemistry; 1985 May; 24(11):2640-4. PubMed ID: 2992572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer across the chromaffin granule membrane.
    Njus D; Knoth J; Cook C; Kelly PM
    J Biol Chem; 1983 Jan; 258(1):27-30. PubMed ID: 6294100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer in chromaffin-vesicle ghosts containing peroxidase.
    Harnadek GJ; Ries EA; Tse DG; Fitz JS; Njus D
    Biochim Biophys Acta; 1992 Jun; 1135(3):280-6. PubMed ID: 1623014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purified cytochrome b561 catalyzes transmembrane electron transfer for dopamine beta-hydroxylase and peptidyl glycine alpha-amidating monooxygenase activities in reconstituted systems.
    Kent UM; Fleming PJ
    J Biol Chem; 1987 Jun; 262(17):8174-8. PubMed ID: 3597367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of ascorbic acid regeneration mediated by cytochrome b561.
    Njus D; Kelley PM; Harnadek GJ; Pacquing YV
    Ann N Y Acad Sci; 1987; 493():108-19. PubMed ID: 3296905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dopamine beta-monooxygenase substrate analogs on ascorbate levels and norepinephrine synthesis in adrenal chromaffin granule ghosts.
    Wimalasena K; Herman HH; May SW
    J Biol Chem; 1989 Jan; 264(1):124-30. PubMed ID: 2909510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer across the chromaffin granule membrane. Use of EPR to demonstrate reduction of intravesicular ascorbate radical by the extravesicular mitochondrial NADH:ascorbate radical oxidoreductase.
    Wakefield LM; Cass AE; Radda GK
    J Biol Chem; 1986 Jul; 261(21):9746-52. PubMed ID: 3015905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversely-oriented cytochrome b561 in reconstituted vesicles catalyzes transmembrane electron transfer and supports extravesicular dopamine beta-hydroxylase activity.
    Seike Y; Takeuchi F; Tsubaki M
    J Biochem; 2003 Dec; 134(6):859-67. PubMed ID: 14769875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reserpic acid as an inhibitor of norepinephrine transport into chromaffin vesicle ghosts.
    Chaplin L; Cohen AH; Huettl P; Kennedy M; Njus D; Temperley SJ
    J Biol Chem; 1985 Sep; 260(20):10981-5. PubMed ID: 4030777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an ascorbate shuttle for the transfer of reducing equivalents across chromaffin granule membranes.
    Beers MF; Johnson RG; Scarpa A
    J Biol Chem; 1986 Feb; 261(6):2529-35. PubMed ID: 3949732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an essential histidine residue in the ascorbate-binding site of cytochrome b561.
    Kipp BH; Kelley PM; Njus D
    Biochemistry; 2001 Apr; 40(13):3931-7. PubMed ID: 11300772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of ATP by an artificially imposed electrochemical proton gradient in chromaffin granule ghosts.
    Roisin MP; Scherman D; Henry JP
    FEBS Lett; 1980 Jun; 115(1):143-7. PubMed ID: 7389914
    [No Abstract]   [Full Text] [Related]  

  • 18. The in situ kinetics of dopamine beta-hydroxylase in bovine adrenomedullary chromaffin cells. Intravesicular compartmentation reduces apparent affinity for the cofactor ascorbate.
    Menniti FS; Knoth J; Peterson DS; Diliberto EJ
    J Biol Chem; 1987 Jun; 262(16):7651-7. PubMed ID: 3584135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer across posterior pituitary neurosecretory vesicle membranes.
    Russell JT; Levine M; Njus D
    J Biol Chem; 1985 Jan; 260(1):226-31. PubMed ID: 2981205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependence of the ATP-driven uptake of noradrenaline by bovine chromaffin-granule ghosts.
    Scherman D; Henry JP
    Eur J Biochem; 1981 Jun; 116(3):535-9. PubMed ID: 6455291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.