These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33462281)

  • 1. A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary-lattice Boltzmann method.
    Zhu Y; Tian FB; Young J; Liao JC; Lai JCS
    Sci Rep; 2021 Jan; 11(1):1691. PubMed ID: 33462281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinematic model of Kármán gaiting in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Dec; 216(Pt 24):4666-77. PubMed ID: 24115054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of flow speed and body size on Kármán gait kinematics in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Sep; 216(Pt 18):3442-9. PubMed ID: 23737556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning.
    Hou J; He C; Li T; Zhang C; Zhou Q
    Bioinspir Biomim; 2024 Aug; 19(5):. PubMed ID: 39025108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refuging rainbow trout selectively exploit flows behind tandem cylinders.
    Stewart WJ; Tian FB; Akanyeti O; Walker CJ; Liao JC
    J Exp Biol; 2016 Jul; 219(Pt 14):2182-91. PubMed ID: 27445401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory study on behavioral responses of hybrid sturgeon, Acipenseridae, to wake flows induced by cylindrical bluff bodies.
    Zha W; Zeng Y; Katul G; Li Q; Liu X; Chen X
    Sci Total Environ; 2021 Dec; 799():149403. PubMed ID: 34364287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The muscle activity of trout exposed to unsteady flow.
    Klein A; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Mar; 203(3):163-173. PubMed ID: 28233059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds.
    Taguchi M; Liao JC
    J Exp Biol; 2011 May; 214(Pt 9):1428-36. PubMed ID: 21490251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments.
    Tian FB; Luo H; Zhu L; Liao JC; Lu XY
    J Comput Phys; 2011 Aug; 230(19):7266-7283. PubMed ID: 23564971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swimming behaviour of silver carp (Hypophthalmichthys molitrix) in response to turbulent flow induced by a D-cylinder.
    Ke S; Tu Z; Goerig E; Tan J; Cheng B; Li Z; Shi X
    J Fish Biol; 2022 Feb; 100(2):486-497. PubMed ID: 34813091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics and muscle activity of pectoral fins in rainbow trout (Oncorhynchus mykiss) station holding in turbulent flow.
    Gibbs BJ; Akanyeti O; Liao JC
    J Exp Biol; 2024 Mar; 227(5):. PubMed ID: 38390692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish Swimming in a Kármán Vortex Street: Kinematics, Sensory Biology and Energetics.
    Liao JC; Akanyeti O
    Mar Technol Soc J; 2017; 51(5):48-55. PubMed ID: 30631214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to school in dense configurations with multi-agent deep reinforcement learning.
    Zhu Y; Pang JH; Gao T; Tian FB
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36322983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient collective swimming by harnessing vortices through deep reinforcement learning.
    Verma S; Novati G; Koumoutsakos P
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5849-5854. PubMed ID: 29784820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast prediction of blood flow in stenosed arteries using machine learning and immersed boundary-lattice Boltzmann method.
    Wang L; Dong D; Tian FB
    Front Physiol; 2022; 13():953702. PubMed ID: 36091404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.