These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33462321)

  • 1. Deep learning-Based 3D inpainting of brain MR images.
    Kang SK; Shin SA; Seo S; Byun MS; Lee DY; Kim YK; Lee DS; Lee JS
    Sci Rep; 2021 Jan; 11(1):1673. PubMed ID: 33462321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based 3D MRI contrast-enhanced synthesis from a 2D noncontrast T2Flair sequence.
    Wang Y; Wu W; Yang Y; Hu H; Yu S; Dong X; Chen F; Liu Q
    Med Phys; 2022 Jul; 49(7):4478-4493. PubMed ID: 35396712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D whole brain segmentation using spatially localized atlas network tiles.
    Huo Y; Xu Z; Xiong Y; Aboud K; Parvathaneni P; Bao S; Bermudez C; Resnick SM; Cutting LE; Landman BA
    Neuroimage; 2019 Jul; 194():105-119. PubMed ID: 30910724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
    Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J
    Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT.
    Srikrishna M; Pereira JB; Heckemann RA; Volpe G; van Westen D; Zettergren A; Kern S; Wahlund LO; Westman E; Skoog I; Schöll M
    Neuroimage; 2021 Dec; 244():118606. PubMed ID: 34571160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based X-ray inpainting for improving spinal 2D-3D registration.
    Esfandiari H; Weidert S; Kövesházi I; Anglin C; Street J; Hodgson AJ
    Int J Med Robot; 2021 Apr; 17(2):e2228. PubMed ID: 33462965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks.
    Ceschin R; Zahner A; Reynolds W; Gaesser J; Zuccoli G; Lo CW; Gopalakrishnan V; Panigrahy A
    Neuroimage; 2018 Sep; 178():183-197. PubMed ID: 29793060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
    Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W
    IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans.
    Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J
    Elife; 2022 Dec; 11():. PubMed ID: 36546674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust and Accurate Deep-learning-based Method for the Segmentation of Subcortical Brain: Cross-dataset Evaluation of Generalization Performance.
    Furuhashi N; Okuhata S; Kobayashi T
    Magn Reson Med Sci; 2021 Jun; 20(2):166-174. PubMed ID: 32389928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.
    Wu Y; Ma Y; Capaldi DP; Liu J; Zhao W; Du J; Xing L
    Magn Reson Imaging; 2020 Feb; 66():93-103. PubMed ID: 30880112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network.
    Ran M; Hu J; Chen Y; Chen H; Sun H; Zhou J; Zhang Y
    Med Image Anal; 2019 Jul; 55():165-180. PubMed ID: 31085444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution 3D MR Fingerprinting using parallel imaging and deep learning.
    Chen Y; Fang Z; Hung SC; Chang WT; Shen D; Lin W
    Neuroimage; 2020 Feb; 206():116329. PubMed ID: 31689536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
    Wu Q; Li Y; Sun Y; Zhou Y; Wei H; Yu J; Zhang Y
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):1004-1015. PubMed ID: 37022393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.