These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 33462667)

  • 1. The Mechanics and Thermodynamics of Tubule Formation in Biological Membranes.
    Mahapatra A; Uysalel C; Rangamani P
    J Membr Biol; 2021 Jun; 254(3):273-291. PubMed ID: 33462667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of protein-mediated bilayer tubes is governed by a snapthrough transition.
    Mahapatra A; Rangamani P
    Soft Matter; 2023 Jun; 19(23):4345-4359. PubMed ID: 37255421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
    Baumgart T; Capraro BR; Zhu C; Das SL
    Annu Rev Phys Chem; 2011; 62():483-506. PubMed ID: 21219150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways.
    Anitei M; Hoflack B
    Nat Cell Biol; 2011 Dec; 14(1):11-9. PubMed ID: 22193159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules.
    Rodríguez-García R; Volkov VA; Chen CY; Katrukha EA; Olieric N; Aher A; Grigoriev I; López MP; Steinmetz MO; Kapitein LC; Koenderink G; Dogterom M; Akhmanova A
    Curr Biol; 2020 Mar; 30(6):972-987.e12. PubMed ID: 32032506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaping plastid stromules-principles of in vitro membrane tubulation applied in planta.
    Erickson JL; Schattat MH
    Curr Opin Plant Biol; 2018 Dec; 46():48-54. PubMed ID: 30041102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton.
    Arumugam S; Bassereau P
    Essays Biochem; 2015; 57():109-19. PubMed ID: 25658348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane trafficking, organelle transport, and the cytoskeleton.
    Rogers SL; Gelfand VI
    Curr Opin Cell Biol; 2000 Feb; 12(1):57-62. PubMed ID: 10679352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of membrane nanotube formation by molecular motors.
    Leduc C; Campàs O; Joanny JF; Prost J; Bassereau P
    Biochim Biophys Acta; 2010 Jul; 1798(7):1418-26. PubMed ID: 19948146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order assemblies of BAR domain proteins for shaping membranes.
    Suetsugu S
    Microscopy (Oxf); 2016 Jun; 65(3):201-10. PubMed ID: 26884618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of the tether-pulling experiment to probe plasma membrane-cytoskeleton interaction in cells.
    Schumacher KR; Popel AS; Anvari B; Brownell WE; Spector AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041905. PubMed ID: 19905340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-field theories for mathematical modeling of biological membranes.
    Lázaro GR; Pagonabarraga I; Hernández-Machado A
    Chem Phys Lipids; 2015 Jan; 185():46-60. PubMed ID: 25240471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Mechanics-Based Mesoscopic Membrane Remodeling Methods: Capturing Both the Physics and the Chemical Diversity.
    Kumar G; Duggisetty SC; Srivastava A
    J Membr Biol; 2022 Dec; 255(6):757-777. PubMed ID: 36197492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane tube formation from giant vesicles by dynamic association of motor proteins.
    Koster G; VanDuijn M; Hofs B; Dogterom M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15583-8. PubMed ID: 14663143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.
    Kapus A; Janmey P
    Compr Physiol; 2013 Jul; 3(3):1231-81. PubMed ID: 23897686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions.
    Alimohamadi H; Rangamani P
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30360496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane curvature and mechanisms of dynamic cell membrane remodelling.
    McMahon HT; Gallop JL
    Nature; 2005 Dec; 438(7068):590-6. PubMed ID: 16319878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics.
    Del Duca S; Faleri C; Iorio RA; Cresti M; Serafini-Fracassini D; Cai G
    Plant Physiol; 2013 Apr; 161(4):1706-21. PubMed ID: 23396835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of plasma membrane proteins that bind to microtubules in pollen tubes and generative cells of tobacco.
    Cai G; Ovidi E; Romagnoli S; Vantard M; Cresti M; Tiezzi A
    Plant Cell Physiol; 2005 Apr; 46(4):563-78. PubMed ID: 15695442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.