These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33462817)

  • 1. A New Randomized Binary Prior Model for Hydraulic Tomography in Fractured Aquifers.
    Poduri S; Kambhammettu B; Gorugantula S
    Ground Water; 2021 Jul; 59(4):537-548. PubMed ID: 33462817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Performance of Pilot-Point Based Hydraulic Tomography with a Geophysical a Priori Model.
    Poduri S; Kambhammettu BVNP
    Ground Water; 2021 Mar; 59(2):214-225. PubMed ID: 32990955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydraulic Tomography: 3D Hydraulic Conductivity, Fracture Network, and Connectivity in Mudstone.
    Tiedeman CR; Barrash W
    Ground Water; 2020 Mar; 58(2):238-257. PubMed ID: 31187873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
    Sanchez-León E; Leven C; Haslauer CP; Cirpka OA
    Ground Water; 2016 Jul; 54(4):498-507. PubMed ID: 26441342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods.
    Maldaner CH; Quinn PM; Cherry JA; Parker BL
    J Contam Hydrol; 2018 Jul; 214():75-86. PubMed ID: 29907430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of ERT, Saline Tracer and Numerical Studies to Delineate Preferential Paths in Fractured Granites.
    Sreeparvathy V; Kambhammettu BVNP; Peddinti SR; Sarada PSL
    Ground Water; 2019 Jan; 57(1):126-139. PubMed ID: 29569235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Application of Hydraulic Tomography to a Large-Scale Fractured Granite Site, Mizunami, Japan.
    Zha Y; Yeh TJ; Illman WA; Tanaka T; Bruines P; Onoe H; Saegusa H; Mao D; Takeuchi S; Wen JC
    Ground Water; 2016 Nov; 54(6):793-804. PubMed ID: 27097271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of steady-state hydraulic tomography to inform the selection of a chaotic advection system.
    Cho MS; Zhao Z; Thomson NR; Illman WA
    J Contam Hydrol; 2020 Feb; 229():103559. PubMed ID: 31784037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.
    Ren S; Parsekian AD; Zhang Y; Carr BJ
    Ground Water; 2019 Mar; 57(2):303-319. PubMed ID: 29766497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.
    Illman WA
    Ground Water; 2014; 52(5):659-84. PubMed ID: 24749939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Results of the reactant sand-fracking pilot test and implications for the in situ remediation of chlorinated VOCs and metals in deep and fractured bedrock aquifers.
    Marcus DL; Bonds C
    J Hazard Mater; 1999 Aug; 68(1-2):125-53. PubMed ID: 10518668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FracKfinder: A MATLAB Toolbox for Computing Three-Dimensional Hydraulic Conductivity Tensors for Fractured Porous Media.
    Young NL; Reber JE; Simpkins WW
    Ground Water; 2019 Jan; 57(1):75-80. PubMed ID: 30381820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poroelastic effects on fracture characterization.
    Burbey TJ
    Ground Water; 2013; 51(6):904-13. PubMed ID: 23387850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly parameterized inversion of groundwater reactive transport for a complex field site.
    Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H
    J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying aquifer type in fractured rock aquifers using harmonic analysis.
    Rahi KA; Halihan T
    Ground Water; 2013; 51(1):76-82. PubMed ID: 22463080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating River Conductance from Prior Information to Improve Surface-Subsurface Model Calibration.
    Cousquer Y; Pryet A; Flipo N; Delbart C; Dupuy A
    Ground Water; 2017 May; 55(3):408-418. PubMed ID: 28122410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography.
    Wen JC; Chen JL; Yeh TJ; Wang YL; Huang SY; Tian Z; Yu CY
    Ground Water; 2020 Jan; 58(1):79-92. PubMed ID: 30859561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Recharge Estimability Through Field-Scale Groundwater Model Calibration.
    Knowling MJ; Werner AD
    Ground Water; 2017 Nov; 55(6):827-840. PubMed ID: 28498485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of piezometer construction on groundwater sampling in fractured rock.
    Kozuskanich J; Novakowski KS; Anderson BC
    Ground Water; 2012; 50(2):266-78. PubMed ID: 21797851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.