These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 33463180)
1. Combined Silk Fibroin Microneedles for Insulin Delivery. Zhu M; Liu Y; Jiang F; Cao J; Kundu SC; Lu S ACS Biomater Sci Eng; 2020 Jun; 6(6):3422-3429. PubMed ID: 33463180 [TBL] [Abstract][Full Text] [Related]
2. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Ling MH; Chen MC Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646 [TBL] [Abstract][Full Text] [Related]
3. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. Lau S; Fei J; Liu H; Chen W; Liu R J Control Release; 2017 Nov; 265():113-119. PubMed ID: 27574991 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766 [TBL] [Abstract][Full Text] [Related]
5. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. Lee IC; Lin WM; Shu JC; Tsai SW; Chen CH; Tsai MT J Biomed Mater Res A; 2017 Jan; 105(1):84-93. PubMed ID: 27539509 [TBL] [Abstract][Full Text] [Related]
6. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072 [TBL] [Abstract][Full Text] [Related]
7. In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography. Liu R; Zhang M; Jin C J Biophotonics; 2017 Jun; 10(6-7):870-877. PubMed ID: 26776883 [TBL] [Abstract][Full Text] [Related]
8. Sustained antigens delivery using composite microneedles for effective epicutaneous immunotherapy. Zhang E; Zeng B; Song R; Yao L; Che H Drug Deliv Transl Res; 2023 Jun; 13(6):1828-1841. PubMed ID: 36964440 [TBL] [Abstract][Full Text] [Related]
9. Swellable silk fibroin microneedles for transdermal drug delivery. Yin Z; Kuang D; Wang S; Zheng Z; Yadavalli VK; Lu S Int J Biol Macromol; 2018 Jan; 106():48-56. PubMed ID: 28778522 [TBL] [Abstract][Full Text] [Related]
10. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156 [TBL] [Abstract][Full Text] [Related]
11. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Chen MC; Ling MH; Kusuma SJ Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333 [TBL] [Abstract][Full Text] [Related]
12. Electro-responsive silk fibroin microneedles for controlled release of insulin. Qi Z; Tao X; Tan G; Tian B; Zhang L; Kundu SC; Lu S Int J Biol Macromol; 2023 Jul; 242(Pt 1):124684. PubMed ID: 37148951 [TBL] [Abstract][Full Text] [Related]
13. Insulin-Loaded Silk Fibroin Microneedles as Sustained Release System. Wang S; Zhu M; Zhao L; Kuang D; Kundu SC; Lu S ACS Biomater Sci Eng; 2019 Apr; 5(4):1887-1894. PubMed ID: 33405562 [TBL] [Abstract][Full Text] [Related]
14. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Zhang Y; Jiang G; Yu W; Liu D; Xu B Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():18-26. PubMed ID: 29407146 [TBL] [Abstract][Full Text] [Related]
15. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Wu M; Zhang Y; Huang H; Li J; Liu H; Guo Z; Xue L; Liu S; Lei Y Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111299. PubMed ID: 32919660 [TBL] [Abstract][Full Text] [Related]
16. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Zhuang J; Rao F; Wu D; Huang Y; Xu H; Gao W; Zhang J; Sun J Eur J Pharm Biopharm; 2020 Dec; 157():66-73. PubMed ID: 33059004 [TBL] [Abstract][Full Text] [Related]
17. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Yang J; Chen Z; Ye R; Li J; Lin Y; Gao J; Ren L; Liu B; Jiang L Drug Deliv; 2018 Nov; 25(1):1728-1739. PubMed ID: 30182757 [TBL] [Abstract][Full Text] [Related]
18. Separable and Inseparable Silk Fibroin Microneedles for the Transdermal Delivery of Colchicine: Development, Characterization, and Comparisons. Liao S; Qiu G; Hu Y; Guo B; Qiu Y AAPS PharmSciTech; 2023 Dec; 25(1):3. PubMed ID: 38114734 [TBL] [Abstract][Full Text] [Related]
19. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. Zhao X; Li X; Zhang P; Du J; Wang Y J Control Release; 2018 Sep; 286():201-209. PubMed ID: 30056119 [TBL] [Abstract][Full Text] [Related]
20. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. Seong KY; Seo MS; Hwang DY; O'Cearbhaill ED; Sreenan S; Karp JM; Yang SY J Control Release; 2017 Nov; 265():48-56. PubMed ID: 28344013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]