These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 33463195)
41. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Brar HS; Wong J; Manuel MV J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688 [TBL] [Abstract][Full Text] [Related]
42. Fabrication of a magnesium alloy with excellent ductility for biodegradable clips. Ikeo N; Nakamura R; Naka K; Hashimoto T; Yoshida T; Urade T; Fukushima K; Yabuuchi H; Fukumoto T; Ku Y; Mukai T Acta Biomater; 2016 Jan; 29():468-476. PubMed ID: 26485165 [TBL] [Abstract][Full Text] [Related]
43. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis. Wang B; Li Y; Wang S; Jia F; Bian A; Wang K; Xie L; Yan K; Qiao H; Lin H; Lan J; Huang Y Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112387. PubMed ID: 34579906 [TBL] [Abstract][Full Text] [Related]
44. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants. Tong X; Shi Z; Xu L; Lin J; Zhang D; Wang K; Li Y; Wen C Acta Biomater; 2020 Jan; 102():481-492. PubMed ID: 31740321 [TBL] [Abstract][Full Text] [Related]
45. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair. Guan X; Xiong M; Zeng F; Xu B; Yang L; Guo H; Niu J; Zhang J; Chen C; Pei J; Huang H; Yuan G ACS Appl Mater Interfaces; 2014 Dec; 6(23):21525-33. PubMed ID: 25343576 [TBL] [Abstract][Full Text] [Related]
46. In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material. Hong D; Saha P; Chou DT; Lee B; Collins BE; Tan Z; Dong Z; Kumta PN Acta Biomater; 2013 Nov; 9(10):8534-47. PubMed ID: 23851175 [TBL] [Abstract][Full Text] [Related]
47. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo. Jiang H; Wang J; Chen M; Liu D Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1068-1074. PubMed ID: 28415391 [TBL] [Abstract][Full Text] [Related]
48. Controllable biodegradation and enhanced osseointegration of ZrO Yuan W; Xia D; Zheng Y; Liu X; Wu S; Li B; Han Y; Jia Z; Zhu D; Ruan L; Takashima K; Liu Y; Zhou Y Acta Biomater; 2020 Mar; 105():290-303. PubMed ID: 31972366 [TBL] [Abstract][Full Text] [Related]
49. A biodegradable Fe/Zn-3Cu composite with requisite properties for orthopedic applications. Tong X; Zhu L; Wu Y; Song Y; Wang K; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Jul; 146():506-521. PubMed ID: 35523413 [TBL] [Abstract][Full Text] [Related]
50. Improved mechanical, degradation, and biological performances of Zn-Fe alloys as bioresorbable implants. Su Y; Fu J; Lee W; Du S; Qin YX; Zheng Y; Wang Y; Zhu D Bioact Mater; 2022 Nov; 17():334-343. PubMed ID: 35386444 [TBL] [Abstract][Full Text] [Related]
51. Influence of Copper on the Microstructural, Mechanical, and Biological Properties of Commercially Pure Zn-Based Alloys for a Potential Biodegradable Implant. Palai D; Roy T; Prasad PS; Hazra C; Dhara S; Sen R; Das S; Das K ACS Biomater Sci Eng; 2022 Apr; 8(4):1443-1463. PubMed ID: 35344329 [TBL] [Abstract][Full Text] [Related]
52. Research on an Mg-Zn alloy as a degradable biomaterial. Zhang S; Zhang X; Zhao C; Li J; Song Y; Xie C; Tao H; Zhang Y; He Y; Jiang Y; Bian Y Acta Biomater; 2010 Feb; 6(2):626-40. PubMed ID: 19545650 [TBL] [Abstract][Full Text] [Related]
53. A surface-engineered multifunctional TiO Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705 [TBL] [Abstract][Full Text] [Related]
54. Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn-0.8%Li-(Mg, Ag) alloys for guided bone regeneration. Zhang Y; Yan Y; Xu X; Lu Y; Chen L; Li D; Dai Y; Kang Y; Yu K Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1021-1034. PubMed ID: 30889634 [TBL] [Abstract][Full Text] [Related]
55. Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model. Lin S; Ran X; Yan X; Yan W; Wang Q; Yin T; Zhou JG; Hu T; Wang G J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1814-1823. PubMed ID: 30408310 [TBL] [Abstract][Full Text] [Related]
56. The in vitro biological properties of Mg-Zn-Sr alloy and superiority for preparation of biodegradable intestinal anastomosis rings. Liu L; Li N; Lei T; Li K; Zhang Y Med Sci Monit; 2014 Jun; 20():1056-66. PubMed ID: 24957079 [TBL] [Abstract][Full Text] [Related]
57. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Li Y; Liu L; Wan P; Zhai Z; Mao Z; Ouyang Z; Yu D; Sun Q; Tan L; Ren L; Zhu Z; Hao Y; Qu X; Yang K; Dai K Biomaterials; 2016 Nov; 106():250-63. PubMed ID: 27573133 [TBL] [Abstract][Full Text] [Related]
58. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis. Guo H; Hu J; Shen Z; Du D; Zheng Y; Peng J Acta Biomater; 2021 Feb; 121():713-723. PubMed ID: 33321221 [TBL] [Abstract][Full Text] [Related]
59. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Yang H; Jia B; Zhang Z; Qu X; Li G; Lin W; Zhu D; Dai K; Zheng Y Nat Commun; 2020 Jan; 11(1):401. PubMed ID: 31964879 [TBL] [Abstract][Full Text] [Related]
60. In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Hou R; Victoria-Hernandez J; Jiang P; Willumeit-Römer R; Luthringer-Feyerabend B; Yi S; Letzig D; Feyerabend F Acta Biomater; 2019 Oct; 97():608-622. PubMed ID: 31365881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]