These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33463197)

  • 1. Electrospun Polyurethane-Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds.
    Sheikholeslam M; Wright MEE; Cheng N; Oh HH; Wang Y; Datu AK; Santerre JP; Amini-Nik S; Jeschke MG
    ACS Biomater Sci Eng; 2020 Jan; 6(1):505-516. PubMed ID: 33463197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [FABRICATION AND BIOCOMPATIBILITY EVALUATION OF POLYURETHANE- ACELLULAR MATRIX COMPOSITE SCAFFOLD IN VITRO AND IN VIVO].
    Xiao Y; Zhang J; Lu Y; Yuan H; Bai L; Jiang X; Cheng J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1016-21. PubMed ID: 26677626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine.
    Heo DN; Yang DH; Lee JB; Bae MS; Kim JH; Moon SH; Chun HJ; Kim CH; Lim HN; Kwon IK
    J Biomed Nanotechnol; 2013 Mar; 9(3):511-5. PubMed ID: 23621008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammatory response and biomechanical properties of coaxial scaffolds for engineered skin in vitro and post-grafting.
    Blackstone BN; Hahn JM; McFarland KL; DeBruler DM; Supp DM; Powell HM
    Acta Biomater; 2018 Oct; 80():247-257. PubMed ID: 30218778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High porous electrospun poly(ε-caprolactone)/gelatin/MgO scaffolds preseeded with endometrial stem cells promote tissue regeneration in full-thickness skin wounds: An in vivo study.
    Ababzadeh S; Farzin A; Goodarzi A; Karimi R; Sagharjoghi Farahani M; Eslami Farsani M; Gharibzad K; Zahiri M; Ai J
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2961-2970. PubMed ID: 32386283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurethane membrane/knitted mesh-reinforced collagen-chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure.
    Wang X; Wu P; Hu X; You C; Guo R; Shi H; Guo S; Zhou H; Chaoheng Y; Zhang Y; Han C
    J Mech Behav Biomed Mater; 2016 Mar; 56():120-133. PubMed ID: 26703227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.
    Bonvallet PP; Schultz MJ; Mitchell EH; Bain JL; Culpepper BK; Thomas SJ; Bellis SL
    PLoS One; 2015; 10(3):e0122359. PubMed ID: 25793720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biostable electrospun microfibrous scaffolds mitigate hypertrophic scar contraction in an immune-competent murine model.
    Lorden ER; Miller KJ; Ibrahim MM; Bashirov L; Hammett E; Chakraborty S; Quiles-Torres C; Selim MA; Leong KW; Levinson H
    Acta Biomater; 2016 Mar; 32():100-109. PubMed ID: 26708709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications.
    Vatankhah E; Prabhakaran MP; Jin G; Mobarakeh LG; Ramakrishna S
    J Biomater Appl; 2014 Feb; 28(6):909-21. PubMed ID: 23640859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of in vitro coculture of keratinocytes derived from foreskin and adipose-derived mesenchymal stem cells (AMSCs) on a multilayer oxygen-releasing electrospun scaffold based on PU/PCL.Sodium percarbonate (SPC)-gelatine/PU.
    Azari A; Rahimi A; Rajabibazl M; Abbaszadeh HA; Hosseinzadeh S; Rahimpour A
    Cell Biochem Funct; 2023 Jun; 41(4):434-449. PubMed ID: 37017290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promotion of dermal regeneration using pullulan/gelatin porous skin substitute.
    Cheng N; Jeschke MG; Sheikholeslam M; Datu AK; Oh HH; Amini-Nik S
    J Tissue Eng Regen Med; 2019 Nov; 13(11):1965-1977. PubMed ID: 31350941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications.
    Tondnevis F; Keshvari H; Mohandesi JA
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2276-2293. PubMed ID: 31967388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes.
    Powell HM; Boyce ST
    J Biomed Mater Res A; 2008 Mar; 84(4):1078-86. PubMed ID: 17685398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncultured adipose-derived regenerative cells (ADRCs) seeded in collagen scaffold improves dermal regeneration, enhancing early vascularization and structural organization following thermal burns.
    Foubert P; Barillas S; Gonzalez AD; Alfonso Z; Zhao S; Hakim I; Meschter C; Tenenhaus M; Fraser JK
    Burns; 2015 Nov; 41(7):1504-16. PubMed ID: 26059048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model.
    Adolph EJ; Pollins AC; Cardwell NL; Davidson JM; Guelcher SA; Nanney LB
    J Biomater Sci Polym Ed; 2014; 25(17):1973-85. PubMed ID: 25290884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering.
    Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M
    J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.
    Bhowmick S; Scharnweber D; Koul V
    Biomaterials; 2016 May; 88():83-96. PubMed ID: 26946262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.