These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33463205)

  • 21. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction.
    Liu M; Shu M; Yan J; Liu X; Wang R; Hou Z; Lin J
    Nanoscale; 2021 Jan; 13(2):1181-1194. PubMed ID: 33404034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility.
    Wang G; Zheng L; Zhao H; Miao J; Sun C; Liu H; Huang Z; Yu X; Wang J; Tao X
    ACS Appl Mater Interfaces; 2011 May; 3(5):1692-701. PubMed ID: 21491931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatibility and Osteogenic Activity of Samarium-Doped Hydroxyapatite-Biomimetic Nanoceramics for Bone Regeneration Applications.
    Balas M; Badea MA; Ciobanu SC; Piciu F; Iconaru SL; Dinischiotu A; Predoi D
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone regeneration with hydroxyapatite particles loaded in photo-cross-linkable hydrogel: An experimental study.
    Li YS; Guo SL; Choi J; Zeng JH; Zhang JW; Zhao FB; Liu CD; Shen XQ; Geng YM
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35363. PubMed ID: 38247247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation.
    Hashemi N; Vaezi Z; Khanmohammadi S; Naderi Sohi A; Masoumi S; Hruschka V; Wolbank S; Redl H; Marolt Presen D; Naderi-Manesh H
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110775. PubMed ID: 32279758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration.
    Dai Z; Dang M; Zhang W; Murugan S; Teh SW; Pan H
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1898-1907. PubMed ID: 31066314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method to visually observe the degradation-diffusion-reconstruction behavior of hydroxyapatite in the bone repair process.
    Li X; Ma B; Li J; Shang L; Liu H; Ge S
    Acta Biomater; 2020 Jan; 101():554-564. PubMed ID: 31683017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration.
    Niu B; Li B; Gu Y; Shen X; Liu Y; Chen L
    J Biomater Sci Polym Ed; 2017 Feb; 28(3):257-270. PubMed ID: 27931176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.
    Mohandes F; Salavati-Niasari M; Fathi M; Fereshteh Z
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():29-36. PubMed ID: 25491798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioactive Nanocomposite Microsponges for Effective Reconstruction of Critical-Sized Calvarial Defects in Rat Model.
    Wang M; Gu Z; Li B; Zhang J; Yang L; Zheng X; Pan F; He J
    Int J Nanomedicine; 2022; 17():6593-6606. PubMed ID: 36594040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and Characterization of Sintered Sr/Fe-Modified Hydroxyapatite Bioceramics for Bone Tissue Engineering Applications.
    Ullah I; Gloria A; Zhang W; Ullah MW; Wu B; Li W; Domingos M; Zhang X
    ACS Biomater Sci Eng; 2020 Jan; 6(1):375-388. PubMed ID: 33463228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano Hydroxyapatite for Biomedical Applications Derived from Chemical and Natural Sources by Simple Precipitation Method.
    Kalpana M; Nagalakshmi R
    Appl Biochem Biotechnol; 2023 Jun; 195(6):3994-4010. PubMed ID: 35596884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric.
    Kim BS; Kim JS; Chung YS; Sin YW; Ryu KH; Lee J; You HK
    J Biomed Mater Res A; 2013 Jun; 101(6):1550-8. PubMed ID: 23135904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of silymarin/duck's feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration.
    Song JE; Jeon YS; Tian J; Kim WK; Choi MJ; Carlomagno C; Khang G
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():347-355. PubMed ID: 30678920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vivo assessment of minerals substituted hydroxyapatite / poly sorbitol sebacate glutamate (PSSG) composite coating on titanium metal implant for orthopedic implantation.
    Pan J; Prabakaran S; Rajan M
    Biomed Pharmacother; 2019 Nov; 119():109404. PubMed ID: 31526972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel green template assisted synthesis of hydroxyapatite nanorods and their spectral characterization.
    Gopi D; Bhuvaneshwari N; Indira J; Kanimozhi K; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():196-202. PubMed ID: 23419788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteogenic commitment of mesenchymal stem cells in apatite nanorod-aligned ceramics.
    Chen Y; Sun Z; Li Y; Hong Y
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21886-93. PubMed ID: 25405622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold.
    Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J
    J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.