These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33463228)
1. Synthesis and Characterization of Sintered Sr/Fe-Modified Hydroxyapatite Bioceramics for Bone Tissue Engineering Applications. Ullah I; Gloria A; Zhang W; Ullah MW; Wu B; Li W; Domingos M; Zhang X ACS Biomater Sci Eng; 2020 Jan; 6(1):375-388. PubMed ID: 33463228 [TBL] [Abstract][Full Text] [Related]
2. Impact of structural features of Sr/Fe co-doped HAp on the osteoblast proliferation and osteogenic differentiation for its application as a bone substitute. Ullah I; Zhang W; Yang L; Ullah MW; Atta OM; Khan S; Wu B; Wu T; Zhang X Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110633. PubMed ID: 32204069 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization. Yedekçi B; Tezcaner A; Alshemary AZ; Yılmaz B; Demir T; Evis Z J Mech Behav Biomed Mater; 2021 Mar; 115():104230. PubMed ID: 33307486 [TBL] [Abstract][Full Text] [Related]
4. Osteogenic potential of human mesenchymal stem cells on eggshells-derived hydroxyapatite nanoparticles for tissue engineering. Patel DK; Jin B; Dutta SD; Lim KT J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1953-1960. PubMed ID: 31820846 [TBL] [Abstract][Full Text] [Related]
5. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass Cozza N; Monte F; Bonani W; Aswath P; Motta A; Migliaresi C J Tissue Eng Regen Med; 2018 Feb; 12(2):e1131-e1142. PubMed ID: 28500666 [TBL] [Abstract][Full Text] [Related]
6. In-vivo assessment of minerals substituted hydroxyapatite / poly sorbitol sebacate glutamate (PSSG) composite coating on titanium metal implant for orthopedic implantation. Pan J; Prabakaran S; Rajan M Biomed Pharmacother; 2019 Nov; 119():109404. PubMed ID: 31526972 [TBL] [Abstract][Full Text] [Related]
7. Synergistic Effect of Micro-Nano-Hybrid Surfaces and Sr Doping on the Osteogenic and Angiogenic Capacity of Hydroxyapatite Bioceramics Scaffolds. Jiang S; Wang X; Ma Y; Zhou Y; Liu L; Yu F; Fang B; Lin K; Xia L; Cai M Int J Nanomedicine; 2022; 17():783-797. PubMed ID: 35221685 [TBL] [Abstract][Full Text] [Related]
8. Controllable Synthesis of Biomimetic Hydroxyapatite Nanorods with High Osteogenic Bioactivity. Li Y; Wang Y; Li Y; Luo W; Jiang J; Zhao J; Liu C ACS Biomater Sci Eng; 2020 Jan; 6(1):320-328. PubMed ID: 33463205 [TBL] [Abstract][Full Text] [Related]
9. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. Robinson L; Salma-Ancane K; Stipniece L; Meenan BJ; Boyd AR J Mater Sci Mater Med; 2017 Mar; 28(3):51. PubMed ID: 28197823 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic ion substituted and Co-substituted hydroxyapatite nanoparticle synthesis using Serratia Marcescens. Paramasivan M; Sampath Kumar TS; Kanniyappan H; Muthuvijayan V; Chandra TS Sci Rep; 2023 Mar; 13(1):4513. PubMed ID: 36934131 [TBL] [Abstract][Full Text] [Related]
11. Bioactive Sr Yang L; Ullah I; Yu K; Zhang W; Zhou J; Sun T; Shi L; Yao S; Chen K; Zhang X; Guo X Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33260162 [TBL] [Abstract][Full Text] [Related]
12. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM. Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187 [TBL] [Abstract][Full Text] [Related]
13. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. Garbo C; Locs J; D'Este M; Demazeau G; Mocanu A; Roman C; Horovitz O; Tomoaia-Cotisel M Int J Nanomedicine; 2020; 15():1037-1058. PubMed ID: 32103955 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699 [TBL] [Abstract][Full Text] [Related]
15. Strontium doped hydroxyapatite from Mercenaria clam shells: Synthesis, mechanical and bioactivity study. Pal A; Nasker P; Paul S; Roy Chowdhury A; Sinha A; Das M J Mech Behav Biomed Mater; 2019 Feb; 90():328-336. PubMed ID: 30399562 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical, mechanical, dielectric, and biological properties of sintered hydroxyapatite/barium titanate nanocomposites for bone regeneration. Swain S; Bhaskar R; Narayanan KB; Gupta MK; Sharma S; Dasgupta S; Han SS; Kumar P Biomed Mater; 2023 Feb; 18(2):. PubMed ID: 36735970 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications. Ingole VH; Hany Hussein K; Kashale AA; Ghule K; Vuherer T; Kokol V; Chang JY; Ling YC; Vinchurkar A; Dhakal HN; Ghule AV J Biomed Mater Res A; 2017 Nov; 105(11):2935-2947. PubMed ID: 28639437 [TBL] [Abstract][Full Text] [Related]
18. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338 [TBL] [Abstract][Full Text] [Related]
19. Fluorapatite ceramics for bone tissue regeneration: Synthesis, characterization and assessment of biomedical potential. Borkowski L; Przekora A; Belcarz A; Palka K; Jozefaciuk G; Lübek T; Jojczuk M; Nogalski A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111211. PubMed ID: 32806239 [TBL] [Abstract][Full Text] [Related]
20. Human Teeth-Derived Bioceramics for Improved Bone Regeneration. Lim KT; Patel DK; Dutta SD; Choung HW; Jin H; Bhattacharjee A; Chung JH Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33266215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]