BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33463234)

  • 21. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epidermal differentiation of stem cells on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers.
    Sundaramurthi D; Krishnan UM; Sethuraman S
    Ann Biomed Eng; 2014 Dec; 42(12):2589-99. PubMed ID: 25253468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly-ADP-ribose polymerase inhibition enhances ischemic and diabetic wound healing by promoting angiogenesis.
    Zhou X; Patel D; Sen S; Shanmugam V; Sidawy A; Mishra L; Nguyen BN
    J Vasc Surg; 2017 Apr; 65(4):1161-1169. PubMed ID: 27288104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable amino acid-based poly(ester amine) with tunable immunomodulating properties and their in vitro and in vivo wound healing studies in diabetic rats' wounds.
    He M; Sun L; Fu X; McDonough SP; Chu CC
    Acta Biomater; 2019 Jan; 84():114-132. PubMed ID: 30508656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications.
    Figueroa-Lopez KJ; Prieto C; Pardo-Figuerez M; Cabedo L; Lagaron JM
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prevention of excessive scar formation using nanofibrous meshes made of biodegradable elastomer poly(3-hydroxybutyrate-
    Kim HS; Chen J; Wu LP; Wu J; Xiang H; Leong KW; Han J
    J Tissue Eng; 2020; 11():2041731420949332. PubMed ID: 32922720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats.
    Zeng Z; Zhu BH
    J Ethnopharmacol; 2014 Jul; 154(3):653-62. PubMed ID: 24794013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing.
    Niemiec SM; Louiselle AE; Hilton SA; Dewberry LC; Zhang L; Azeltine M; Xu J; Singh S; Sakthivel TS; Seal S; Liechty KW; Zgheib C
    Front Immunol; 2020; 11():590285. PubMed ID: 33193424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cerium oxide nanoparticle conjugation to microRNA-146a mechanism of correction for impaired diabetic wound healing.
    Dewberry LC; Niemiec SM; Hilton SA; Louiselle AE; Singh S; Sakthivel TS; Hu J; Seal S; Liechty KW; Zgheib C
    Nanomedicine; 2022 Feb; 40():102483. PubMed ID: 34748956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photopolymerized Zwitterionic Hydrogels with a Sustained Delivery of Cerium Oxide Nanoparticle-miR146a Conjugate Accelerate Diabetic Wound Healing.
    Stager MA; Bardill J; Raichart A; Osmond M; Niemiec S; Zgheib C; Seal S; Liechty KW; Krebs MD
    ACS Appl Bio Mater; 2022 Mar; 5(3):1092-1103. PubMed ID: 35167263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun poly(hydroxybutyrate-co-hydroxyvalerate) fibrous membranes consisting of parallel-aligned fibers or cross-aligned fibers: characterization and biological evaluation.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2011; 22(18):2475-97. PubMed ID: 21144165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing.
    Lv F; Wang J; Xu P; Han Y; Ma H; Xu H; Chen S; Chang J; Ke Q; Liu M; Yi Z; Wu C
    Acta Biomater; 2017 Sep; 60():128-143. PubMed ID: 28713016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerated and scarless wound repair by a multicomponent hydrogel through simultaneous activation of multiple pathways.
    Bhattacharya D; Tiwari R; Bhatia T; Purohit MP; Pal A; Jagdale P; Mudiam MKR; Chaudhari BP; Shukla Y; Ansari KM; Kumar A; Kumar P; Srivastava V; Gupta KC
    Drug Deliv Transl Res; 2019 Dec; 9(6):1143-1158. PubMed ID: 31317345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
    Choi JS; Lee SW; Jeong L; Bae SH; Min BC; Youk JH; Park WH
    Int J Biol Macromol; 2004 Aug; 34(4):249-56. PubMed ID: 15374681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Dimethyloxalylglycine-Embedded Poly(ε-caprolactone) Fiber Meshes on Wound Healing in Diabetic Rats.
    Zhang Q; Oh JH; Park CH; Baek JH; Ryoo HM; Woo KM
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):7950-7963. PubMed ID: 28211272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application.
    Masood F; Chen P; Yasin T; Fatima N; Hasan F; Hameed A
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1054-60. PubMed ID: 23827542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrospun membranes chelated by metal magnesium ions enhance pro-angiogenic activity and promote diabetic wound healing.
    Liu M; Wang X; Sun B; Wang H; Mo X; El-Newehy M; Abdulhameed MM; Yao H; Liang C; Wu J
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129283. PubMed ID: 38199538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats.
    Thangavel P; Kannan R; Ramachandran B; Moorthy G; Suguna L; Muthuvijayan V
    J Colloid Interface Sci; 2018 May; 517():251-264. PubMed ID: 29428812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.